GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • Ma, Chao  (2)
  • Wang, Lei  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
  • 1
    In: BMC Microbiology, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-11-16)
    Abstract: The root-zone restriction cultivation technique is used to achieve superior fruit quality at the cost of limited vegetative and enhanced reproductive development of grapevines. Fungal interactions and diversity in grapevines are well established; however, our knowledge about fungal diversity under the root-zone restriction technique is still unexplored. To provide insights into the role of mycobiota in the regulation of growth and fruit quality of grapevine under root-zone restriction, DNA from rhizosphere and plant compartments, including white roots (new roots), leaves, flowers, and berries of root-zone restricted (treatment) and conventionally grown plants (control), was extracted at three growth stages (full bloom, veraison, and maturity). Results Diversity analysis based on the ITS1 region was performed using QIIME2. We observed that the root-zone restriction technique primarily affected the fungal communities of the soil and plant compartments at different growth stages. Interestingly, Fusarium, Ilyonectria, Cladosporium and Aspergillus spp observed in the rhizosphere overlapped with the phyllosphere at all phenological stages, having distinctive abundance in grapevine habitats. Peak richness and diversity were observed in the rhizosphere at the full bloom stage of control plants, white roots at the veraison stage of treatment, leaves at the maturity stage of treatment, flowers at the full bloom stage and berries at the veraison stage of control plants. Except for white roots, the diversity of soil and plant compartments of treated plants tended to increase until maturity. At the maturity stage of the treated and control plants, the abundance of Aspergillus spp. was 25.99 and 29.48%, respectively. Moreover, the total soluble sugar content of berries was 19.03 o brix and 16 o brix in treated and control plants, respectively, at the maturity stage. Conclusions This is the first elucidative study targeting the fungal diversity of conventional and root-restricted cultivation techniques in a single vineyard. Species richness and diversity are affected by stressful cultivation known as root zone restriction. There is an association between the abundance of Aspergillus spp. and fruit quality because despite causing stress to the grapevine, superior quality of fruit is retrieved in root-zone restricted plants.
    Type of Medium: Online Resource
    ISSN: 1471-2180
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2041505-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-02-25)
    Abstract: This study characterized growth characteristics and cellular details employing microscopy techniques in hydroponically-grown Ca 2+ -sufficient and Ca 2+ -deficient grapevines ( Vitis vinifera ) in a glasshouse. The Ca 2+ -deficient vines exhibited significant reductions in shoot length, shoot and trunk fresh weights, leaf area, chlorophyll, which eventually led to drooping, yellowing, and chlorosis of leaves. Roots were less dense and primarily dark and necrotic. Furthermore, their xylem vessels were small, polygonal, and appeared to be collapsed yet increased in number and developed lateral roots. Despite such alterations, the anatomical organization of leaves was not affected, yet they developed with more xylem vessels with thick walls and lignin in their mesophyll and vascular tissues. The chloroplasts in internodes’ chlorenchyma, phloem, and cambium underwent significant ultrastructural modifications. The concentrations of macro and micronutrients varied significantly among the roots, trunk, canes, and leaves, including the growth characteristics. These structural and growth modifications of calcium deficiency enable us to understand better the link between the symptoms and functions and for a holistic understanding of Ca 2+ functionalities.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...