GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1585-1585
    Abstract: Abstract 1585 Recent studies utilising surrogate leukaemic stem cell (LSC) assays have suggested that LSCs in acute lymphoblastic leukaemias (ALLs) might be neither rare, nor phenotypically or functionally distinct. However, studies of candidate LSCs in surrogate assays might not recapitulate the full leukaemic potential of candidate LSCs in patients, and in particular their responsiveness and resistance to therapeutic targeting. Therefore, we have investigated the identity, molecular and functional properties, and persistence of different subsets of candidate LSCs in childhood ALL, at diagnosis and during the course of clinical and molecular remissions in response to chemotherapy, and their relationship to subsequent relapses. First, we investigated 6 patients diagnosed with “good prognosis” TEL-AML1+ ALL, and at diagnosis we found TEL-AML1+ leukaemic cells within the immature B cell progenitor compartment (proB: 34+38+19+), mature B-cells (34-19+), as well as in a population expressing an aberrant combination of stem cell (34+38-/lo) and B-cell (19+) cell surface markers. These stem/B (34+38-/lo19+) cells were all TEL-AML1+ and not present in age-matched normal bone marrow controls. In contrast, haematopoietic stem cells (HSC: 34+38-19-) were not part of the TEL-AML1+ leukaemic clone in any of the patients. 15 days into chemotherapy, all TEL-AML1+ mature B-cells were eliminated in all patients, and this was followed by a clearance of leukaemic proB cells by day 28 of treatment. In striking contrast, leukaemic stem/B cells were still detectable at day 28, but in all TEL-AML1 patients, at later stages all leukaemic cells including the stem/B cells were undetectable, and at the same time these patients went into complete remission with less than 1 leukaemic cell in 10e4 cells detectable. A similar pattern was observed in a case of “high risk” BCR-ABL+ ALL: BCR-ABL+ proB and B-cells were efficiently eliminated by day 90 of the course of chemotherapy, and up to 180 days into the treatment only 34+38-/lo19+ stem/B cells remained part of the BCR-ABL+ clone. In agreement with the persistence of BCR-ABL+ 34+38-/lo19+ stem/B cells, this patient relapsed 17 months after the initiation of chemotherapy. In order to understand the underlying mechanisms of the observed functional and therapeutic heterogeneity seen in leukaemic subpopulations, we performed comparative gene-expression analysis of diagnostic leukaemic stem/B and proB cells of TEL-AML1+ patients. This analysis revealed a differential gene expression pattern between leukaemic stem/B and proB cells, with positive regulators of cell cycle being the most distinctly up regulated genes in leukaemic proB cells. In agreement with this, cell cycle analysis of 3 diagnostic TEL-AML1+ cases also showed proB cells to be more actively cycling compared to the more quiescent state of the leukaemic stem/B compartment (proB: G0 42%; G1 40%; S,G2,M 18% vs. stem/B: G0 81%; G1 18%; S,G2,M 1%), providing a potential mechanistic basis for the relative therapy resistance of ALL stem/B cells. Taken together the present studies suggest that quiescent 34+38-/lo19+ stem/B cells are selectively resistant to chemotherapy, and most likely the origin of relapses when these occur in childhood ALL. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1380-1380
    Abstract: Abstract 1380 Although the growth factor receptor (GFR) FLT3 has a crucial role in normal early B- and T-lymphoid development, constitutively activating internal tandem duplications (ITDs) of FLT3 are almost entirely restricted to patients with adverse-risk acute myeloid leukemia. We used a murine knock-in model of FLT3-ITD myeloproliferative disease (MPD) to gain a better understanding of the cellular and molecular basis for the myeloid-bias of FLT3-ITD-induced hematological malignancies. As Flt3 cell surface expression is lacking in homozygous Flt3-itd mice, we used CD48 and CD150 expression to investigate the distribution of multipotent progenitors (MPPs) and hematopoietic stem cells (HSCs) within the primitive Lin-Sca1+Kit+ (LSK) compartment. Notably, phenotypic (LSKCD150+CD48-) and functional HSCs were markedly reduced in adult Flt3-itd mice. Competitive transplantation experiments using fetal liver confirmed that HSC numbers were reduced (20-fold reduction) by Flt3-ITDs, in a cell-extrinsic manner. Rather, LSKCD48+150- cells (MPPs) were expanded 2.7-fold in Flt3-itd mice comprising 〉 90% of LSK cells. Similarly to Flt3high wild type (WT) lymphoid-primed multipotent progenitors (LMPPs), nanofluidic gene-expression analysis demonstrated that WT MPPs and Flt3-itd MPPs were myeloid-primed (Csf1r, Csf2r, Cebpa, Mpo) with loss of megakaryocyte and erythroid (MkE) priming (Eklf, Epor, Vwf, Gata1). In contrast, the lymphoid (Il7r, Rag1, sIgH) transcriptional priming of WT MPPs was downregulated in Flt3-itd MPPs. In agreement with this, Flt3-itd MPPs sustained extensive GM potential in vitro, with no MkE potential and, unlike WT MPPs, considerably reduced lymphoid potential. Furthermore, microarray analysis demonstrated global upregulation of the myeloid program in Flt3-itd MPPs. These findings demonstrate that primitive lympho-myeloid MPPs, are expanded and biased towards myeloid development by Flt3-ITDs. In agreement with reduced lymphoid-priming of Flt3-itd MPPs, analysis of early thymic development demonstrated a 10-fold reduction of early thymic progenitors (DN1 Kit+) in Flt3-itd mice. Subsequent stages of thymic development were also reduced, as was overall thymic cellularity. Interestingly, expression of the chemokine receptor CCR9 was 5.5-fold reduced in Flt3-itd MPPs suggesting that thymic seeding progenitors in the bone marrow are suppressed by FLT3-ITDs. Previous studies have suggested that the earliest stage of B-cell development, pre-pro-B cells, retain both B-cell and myeloid potential. Lin-CD19-CD24-AA4.1+CD43+B220+ pre-pro-B cells were expanded 13.7-fold in Flt3-itd mice, whereas subsequent stages of CD19+ B-lymphopoiesis were all reduced. The expanded pre-pro-B cells in Flt3-itd mice were myeloid biased at the transcriptional level with markedly reduced expression of lymphoid genes. Pu1 is a master-regulator of myeloid commitment in early hematopoiesis and a STAT3 target gene. As FLT3-ITDs are known to activate STAT3, unlike WT FLT3, we therefore investigated Pu1 expression in Flt3-itd mice using a Pu1-YFP reporter. Expression of Pu1 was significantly increased in LSK cells (1.4 fold) and in pre-pro-B cells (2.6 fold) in Flt3-itd mice. Furthermore, other STAT3 target genes (Cish, Id1, Pim1, Socs1, Junb) were also upregulated in these cell populations in Flt3-itd mice. Moreover, gene-set enrichment analysis in MPPs demonstrated upregulation of Pu1 target genes in Flt3-itd mice, thus providing a link between aberrant ITD signaling and the observed myeloid bias. In order to determine the functional relevance of this myeloid-bias of Flt3-itd MPPs for disease transformation, we targeted a conditional Aml1-ETO fusion-gene to the earliest B-cell progenitors in Flt3-itd mice using Mb1-Cre. Expression of AML1-ETO in WT mice did not induce any phenotype. However, Mb1-Cre induced AML1-ETO expression in Flt3-itd mice led to a high-penetrance, short latency acute leukaemia. All leukaemias expressed myeloid markers (Mac1 and Gr1) but lacked CD19 and B220 expression. These data demonstrate that Flt3-ITDs expand primitive MPPs with a myeloid lineage bias at the molecular and cellular level, at the expense of HSCs and early lymphoid development. This provides insight into the mechanisms by which mutations resulting in activation of a GFR introduce a lineage bias of resulting hematological malignancies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 118, No. 6 ( 2011-08-11), p. 1544-1548
    Abstract: Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3− Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Reports, Elsevier BV, Vol. 3, No. 6 ( 2013-06), p. 1766-1776
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Immunology, Springer Science and Business Media LLC, Vol. 13, No. 4 ( 2012-4), p. 412-419
    Type of Medium: Online Resource
    ISSN: 1529-2908 , 1529-2916
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2026412-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2335-2335
    Abstract: Abstract 2335 The stepwise lineage-commitment from hematopoietic stem cells (HSCs) in the bone marrow (BM) to T-lymphocyte-restricted progenitors in the thymus represents a paradigm for how distinct stages of lineage restriction from a multipotent to a lineage-restricted progenitor require different extrinsic cues. However, the commitment stage at which progenitors migrate from the BM to the thymus remains unclear. Previous studies demonstrated the existence of adult early thymic progenitors (ETPs) restricted to T lymphocyte and granulocyte-monocyte (GM) fates (Bell and Bhandoola, Nature 2008; Wada et al., Nature 2008). The challenge remains to couple this thymic T–GM restricted progenitor to candidate thymus seeding progenitors (TSPs) identified in the BM, such as common lymphoid progenitors, lymphoid-primed multipotent progenitors (LMPPs) and HSCs, which all also possess B cell potential. Using high resolution FACS and sensitive clonal assays, we have identified the most primitive ETPs in the neonatal thymus and demonstrate at the single cell level that rare Lin−CD4−CD8a−CD25−KIThiFLT3hi ETPs possess combined granulocyte-monocyte (GM), T and B lymphocyte but not megakaryocyte-erythroid (MkE) lineage potentials, identical to closely molecularly related thymus-seeding progenitors in the BM. Moreover, global molecular profiling demonstrates that neonatal Lin−CD4−CD8a−CD25−KIThiFLT3hi ETPs cluster closest to multipotent progenitors in the BM, rather than subsequent (DN1 and DN2) progenitor stages in the thymus. Finally, in support of Lin−CD4−CD8a−CD25−KIThiFLT3hi ETPs with combined T, B and GM lineage potentials, being the most multipotent progenitors in the thymus, phenotypic and functional studies demonstrate that the neonatal thymus is not seeded by HSCs or MPPs with MkE potential. These findings establish for the first time a distinct lineage commitment stage for the transition of T-lineage commitment from the BM to the remote thymus. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...