GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancers, MDPI AG, Vol. 14, No. 15 ( 2022-07-22), p. 3567-
    Abstract: Novel therapeutic tools are warranted to improve outcomes for children with acute myeloid leukemia (AML). Differences in the proteome of leukemic blasts and stem cells (AML-SCs) in AML compared with normal hematopoietic stem cells (HSCs) may facilitate the identification of potential targets for future treatment strategies. In this explorative study, we used mass spectrometry to compare the proteome of AML-SCs and CLEC12A+ blasts from five pediatric AML patients with HSCs and hematopoietic progenitor cells from hematologically healthy, age-matched controls. A total of 456 shared proteins were identified in both leukemic and control samples. Varying protein expression profiles were observed in AML-SCs and leukemic blasts, none having any overall resemblance to healthy counterpart cell populations. Thirty-four proteins were differentially expressed between AML-SCs and HSCs, including the upregulation of HSPE1, SRSF1, and NUP210, and the enrichment of proteins suggestive of protein synthesis perturbations through the downregulation of EIF2 signaling was found. Among others, NUP210 and calreticulin were upregulated in CLEC12A+ blasts compared with HSCs. In conclusion, the observed differences in protein expression between pediatric patients with AML and pediatric controls, in particular when comparing stem cell subsets, encourages the extended exploration of leukemia and AML-SC-specific biomarkers of potential relevance in the development of future therapeutic options in pediatric AML.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 15-16
    Abstract: Introduction: Clonal hematopoiesis (CH) denotes somatic mutations in genes related to myeloid neoplasms present at any variant allele frequency (VAF). Clonal hematopoiesis increases the risk of cardiovascular disease, de novo myeloid neoplasms and therapy-related myeloid neoplasms (tMN). It is well established that CH can be detected years before disease onset. Furthermore, the impact of specific mutations with regards to progression from CH to tMN is currently being unraveled. When exposed to cytoreductive therapy, a proliferative advantage of stem cells with CH over normal hematopoietic stem cells (HSCs) has been demonstrated. However, it remains unclear whether CH is to be considered a mere tMN risk factor, or if the mutations directly impact or even drive the development of tMN. We hypothesized that CH contributes to the development of tMN, and pursued this by investigating the evolution of CH, present in patients with lymphoma and multiple myeloma, prior to autologous stem cell transplantation (ASCT) and at time of tMN diagnosis. Methods: Patients included were treated with ASCT at the Department of Hematology, Aarhus University Hospital, Denmark, between 1989 and 2016. Inclusion criteria were (i) treatment with ASCT on the indication of a non-myeloid primary disease; (ii) subsequent development of tMN, and (iii) available mononuclear cells (MNCs) at pre-ASCT and time of tMN. All tMN diagnoses were reviewed by an experienced pathologist. Data from time of ASCT of this cohort has previously been reported (Soerensen et al., 2020, PMID: 32150606). Twelve patients with available MNCs at both time points were identified out of 36 tMN patients. Samples (either leukapheresis products or bone marrow MNCs) were subjected to targeted next-generation sequencing, utilizing a 30-gene panel (Myeloid Tumor Solution, SOPHiA Genetics, Saint Sulpice, Switzerland). Variant exclusion criteria were (1) read depth & lt; 3000; (2) VAF & lt; 0.003; (3) variant location outside ±25 nucleotides of coding region; (4) indel present in homopolymeric stretch, and (5) potential germline variants at pre-ASCT with VAF & gt; 0.95 or between 0.45 and 0.55, representing homo- and heterozygosity, and reported in the Exome Aggregation Consortium (ExAC) database. Results: The cohort included 12 patients with a median age at ASCT of 63 years (range 37-69) and male predominance (75%). Median time to tMN following ASCT was 3.9 years (range 0.7-15.3), with 7 patients developing therapy-related myelodysplastic syndrome and 5 therapy-related acute myeloid leukemia. A total of 36 and 38 mutations were detected at ASCT and tMN, respectively. Prior to ASCT, DNMT3A (39%) and TET2 (19%) were the most frequently mutated genes, whereas the mutational landscape at tMN proved to be more heterogenous, with TP53 (21%), DNMT3A (18%), RUNX1 (13%) and ASXL1 (13%) comprising the majority of mutated genes. Nine patients (75%) had one or more mutations that could be detected at pre-ASCT as well as at tMN. Seven patients (58%) had CH at pre-ASCT that were present at higher VAF ( & gt;0.15 VAF) in bone marrow samples at tMN. Of these, 6 patients had CH at VAF & lt; 0.02 at baseline. We found a total of 14 mutations that were detected at both prior to ASCT and tMN diagnosis, distributed among TP53, SRSF2, DNMT3A, ASXL1, TET2, NRAS and EZH2. Importantly, all clones harboring mutations in non-DNMT3A genes expanded until diagnosis of tMN to VAF & gt; 0.30, with the exception of TET2, which displayed only a modest increase in VAF from 0.01 to 0.15. Conclusion: In this cohort of patients treated with ASCT and who subsequently developed tMN, we found the majority of patients to harbor CH in HSCs pre-ASCT that, at time of tMN, completely dominated the malignant clone. Our data suggests both a persistency of CH identified in HSCs in peripheral blood prior to ASCT to the leukemic stem cells in bone marrow at tMN diagnosis, as well as an expansion of the clones over time. These findings provide evidence to support the emerging theories that tMNs are instigated by subsets of hematopoietic cells that gain malignant somatic mutations and drive the pathogenesis years before onset disease. Figure Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1529-1529
    Abstract: Introduction: Therapy-related myeloid neoplasms (tMN) are high-risk conditions evolved after exposure to a number of agents, including cytotoxic therapy, and include myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN). As such cytoreduction as part of autologous stem cell transplantation (ASCT) increases the risk of developing tMN. Importantly, both the use of ASCT and the incidence of tMN are rising. The recent characterization of clonal hematopoiesis of indeterminate potential (CHIP) has, in preliminary reports, been shown to increase the risk of developing de novo hematological disease as well as tMN. We hypothesized that patients with non-myeloid primary disease who develop tMN after ASCT, had detectable myeloid mutations at time of transplantation, and that these may represent a risk factor in the development of tMN. This study characterizes tMN patients previously subjected to ASCT and investigates whether CHIP mutations are present in hematopoietic stem cells at time of ASCT. Methods: The cohort of this observational study consists of patients treated with ASCT at the Department of Hematology, Aarhus University Hospital (Denmark) from 1989 to 2016. Cases were identified via the Danish Pathology Registry and all tMN diagnoses were verified by the same experienced hemopathologist (GBK). Only cases from patients with non-myeloid primary disease, who were diagnosed with tMN after being treated with ASCT (minimum latency being 90 days) were included. 36 cases with available leukapheresis products were identified out of a cohort of 1130 patients. Samples collected from leukapheresis prior to ASCT were subjected to targeted next-generation sequencing (NGS), using the commercially available panel "Myeloid Solution" (Sophia Genetics, Saint Sulpice, Switzerland), covering 30 genes relevant for myeloid neoplasms, joined with a bioinformatics pipeline from Sophia Genetics. Samples from 31 patients have been subjected to NGS. Variants residing in or within ± 25 nucleotides of coding exons and with coverage 〉 5000 at the variant site were reported. Indels present in polynucleotide stretches were excluded. Data for continuous variables age, latency to tMN and survival were analyzed as one sample from a normal distribution based on the Students t-test. Normality was assessed via Q-Q plot. Estimates are reported with a 95% confidence intervals (Stata, version 15.1, StataCorp LLC, TX, USA). Results: The cohort consisted of 25 males (80.7%) and 6 females (19.3%), with an estimated median age at ASCT of 58 years (CI 95% 54;63). Estimated median time to tMN was 3.7 years (CI 95% 2.5;5.4) and estimated median survival after tMN diagnosis was 132 days (CI 95% 71;246). At time of tMN diagnosis, 14 patients had a poor risk karyotype and 9 patients had intermediate risk karyotype (hereof 4 normal karyotype). Karyotype was not evaluated in 8 patients. CHIP mutations were detected in stem cell enriched leukapheresis products from 21 patients (67.7%). Of these, we found multiple mutations in 14 patients (66%) and in one patient as many as 6 CHIP mutations. Point mutations were frequently found in the DNMT3A gene and was present in 16 out of 21 patients (76%). Six patients had more than one DNMT3A mutation, one of which had 5 separate DNMT3A mutations. Other mutations detected were TP53 (6/21), TET2 (5/21), ASXL1 (4/21), EZH2 (1/21), WT1 (1/21), JAK2 (1/21), NRAS (1/21), HRAS (1/21), BRAF (1/21), CSF3R (1/21), SF3B1 (1/21), ZRSR2 (1/21), CALR (1/21), SRSF2 (1/21). Conclusion: We found that CHIP mutations can be detected at time of ASCT in patients being treated for non-myeloid diseases. We hypothesize that presence of CHIP mutations at ASCT may predict the development of tMN and as such serve as a biomarker in this setting. We speculate that high-dose cytotoxic therapy may provide an evolutionary advantage for hematopoietic clones containing CHIP mutations. On the other hand, we cannot rule out that the cytoreduction administered prior at ASCT may be a main contributor to the tMN development. To address this as well as the development of tMN in the post-ASCT phase, a nested case-control study will be necessary. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Bone Marrow Transplantation, Springer Science and Business Media LLC, Vol. 57, No. 3 ( 2022-03), p. 460-465
    Type of Medium: Online Resource
    ISSN: 0268-3369 , 1476-5365
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2004030-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...