GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (6)
  • Lu, Xiaohui  (6)
Material
Publisher
  • AIP Publishing  (6)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2023
    In:  Review of Scientific Instruments Vol. 94, No. 7 ( 2023-07-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 94, No. 7 ( 2023-07-01)
    Abstract: Piezoelectric stick-slip driven nanopositioning stage (PSSNS) with nanometer resolution has been widely used in the field of micro-operation. However, it is difficult to achieve nanopositioning over large travel, and its positioning accuracy is affected by the hysteresis characteristics of the piezoelectric elements, external uncertain disturbances, and other nonlinear factors. To overcome the above-mentioned problems, a composite control strategy combining stepping mode and scanning mode is proposed in this paper, and an integral back-stepping linear active disturbance rejection control (IB-LADRC) strategy is proposed in the scanning mode control phase. First, the transfer function model of the system in the micromotion part was established, and then the unmodeled part of the system and the external disturbance were treated as the total disturbance and extended to a new system state variable. Second, a linear extended state observer was used as the core of the active disturbance rejection technique to estimate displacement, velocity, and total disturbance in real time. In addition, by introducing virtual control variables, a new control law was designed to replace the original linear control law and improve the positioning accuracy and robustness of the system. Furthermore, the effectiveness of the IB-LADRC algorithm was verified by simulation comparison experiments and experimentally validated on a PSSNS. Finally, experimental results show that the IB-LADRC is a practical solution for a controller capable of handling disturbances during the positioning of a PSSNS with a positioning accuracy of less than 20 nm, which essentially remains constant under load.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Applied Physics Letters Vol. 109, No. 7 ( 2016-08-15)
    In: Applied Physics Letters, AIP Publishing, Vol. 109, No. 7 ( 2016-08-15)
    Abstract: The performance of a piezoelectric energy harvester with a coupling chamber was investigated under vortex-induced pressure. The harvester consisted of a power chamber, a buffer, and a storage chamber. Different types of vortex (i.e., clockwise or counter-clockwise) could be induced by changing the volume ratio between the power chamber and the storage chamber. The peak voltage of the harvester could be tuned by changing the volume ratio. For example, under a pressure of 0.30 MPa, input cycle of 2.0 s, and flow rate of 200 l/min, the peak voltage decreased from 79.20 to 70.80 V with increasing volume ratio. The optimal volume ratio was 2.03, which resulted in the formation of a clockwise vortex. The corresponding effective power through a 600 kΩ resistor was 1.97 mW.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2016
    In:  Review of Scientific Instruments Vol. 87, No. 8 ( 2016-08-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 87, No. 8 ( 2016-08-01)
    Abstract: The smooth impact drive mechanism (SIDM) actuator is traditionally excited by a saw-tooth wave, but it requires large input voltages for high-speed operation and load capacity. To improve the output characteristic of the SIDM operating at low input voltage, a novel driving method based on ultrasonic friction reduction technology is proposed in this paper. A micro-amplitude sinusoidal signal with high frequency is applied to the rapid deformation stage of the traditional saw-tooth wave. The proposed driving method can be realized by a composite waveform that includes a driving wave (D-wave) and a friction regulation wave (FR-wave). The driving principle enables lower input voltage to be used in normal operation, and the principle of the proposed driving method is analyzed. A prototype of the SIDM is fabricated, and its experimental system is established. The tested results indicate that the actuator has suitable velocity and load characteristics while operating at lower input voltage, and the load capacity of the actuator is 2.4 times that of an actuator excited by a traditional saw-tooth driving wave.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Review of Scientific Instruments Vol. 93, No. 5 ( 2022-05-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 93, No. 5 ( 2022-05-01)
    Abstract: To achieve high speed, nano-resolution, and large stroke, a resonance/non-resonance hybrid piezoelectric stick–slip actuator with a lever-type flexure hinge (LTFH-PSSA) is proposed in this work. The actuator can achieve high speed and large stroke in the resonance mode by the stick–slip working principle and achieve nano-resolution in the non-resonant mode by the direct drive working principle. The excitation electrical signals used in the two working modes are the sine waveform and half-sine waveform, respectively. Compared with the traditional sawtooth waveform, the excitation signal of the sine and half-sine waveforms have no sudden change of voltage, which are more conducive to reduce the impact and vibration of the system. Moreover, a series of static analysis and modal analysis of the stator are carried out by the finite element method. The experimental system is built to test the output characteristics of the LTFH-PSSA. In the resonance state by the stick–slip working principle, the impedance analysis and frequency characteristic test of the LTFH-PSSA are carried out, which states that the tested resonance frequency agrees well with the simulated ones. When the locking force, the voltage, and the frequency are 2 N, 100 Vp–p, and 1850 Hz, the speed of the LTFH-PSSA is up to 52.71 mm/s, and the backward motion is suppressed completely as well. In the non-resonance state, the resolution can reach 2.19 nm and 2.69 nm in the forward and backward motion, respectively. So far, the proposed actuator ranks first in speed and resolution among all reported LTFH-PSSAs.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2018
    In:  Review of Scientific Instruments Vol. 89, No. 8 ( 2018-08-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 89, No. 8 ( 2018-08-01)
    Abstract: This paper presents a lever-type stick-slip piezoelectric actuator based on the lever amplification principle. The proposed actuator can achieve large strokes, high velocity, and bidirectional actuation with a single piezoelectric stack. The finite element simulation of the lever-type flexible hinge is performed, and the designed prototype is tested. When the voltage is 100 Vp-p, the maximum forward velocity is 7.69 mm/s under the symmetry of 20%. The maximum reverse velocity is 7.12 mm/s under the symmetry of 80%. The maximum forward and reverse displacement deviation within 10 cycles is 0.88 μm, and the maximum load can reach 105 g.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2019
    In:  Review of Scientific Instruments Vol. 90, No. 9 ( 2019-09-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 90, No. 9 ( 2019-09-01)
    Abstract: In order to obtain the high velocity in compact size, a piezoelectric stick-slip linear actuator is proposed in this paper. The proposed actuator adopts rhombus-type flexure hinge mechanism which can be used as a displacement amplifier which can easily produce a parasitic motion. The working principle of the proposed actuator is discussed, and the finite element method is adopted to verify the generation of parasitic motion of the flexure hinge mechanism. A prototype is manufactured to investigate the working performance. The prototype achieves a maximum velocity of 13.08 mm/s at a frequency of 570 Hz under the sawtooth wave exciting voltage of 100 Vp-p. The maximum efficiency is about 1.26% with a load of 135 g and velocity of 7.12 mm/s.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...