GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AIP Publishing  (2)
  • Lu, Xiaohui  (2)
  • 2020-2024  (2)
Materialart
Verlag/Herausgeber
  • AIP Publishing  (2)
Person/Organisation
Sprache
Erscheinungszeitraum
  • 2020-2024  (2)
Jahr
  • 1
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2023
    In:  Review of Scientific Instruments Vol. 94, No. 7 ( 2023-07-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 94, No. 7 ( 2023-07-01)
    Kurzfassung: Piezoelectric stick-slip driven nanopositioning stage (PSSNS) with nanometer resolution has been widely used in the field of micro-operation. However, it is difficult to achieve nanopositioning over large travel, and its positioning accuracy is affected by the hysteresis characteristics of the piezoelectric elements, external uncertain disturbances, and other nonlinear factors. To overcome the above-mentioned problems, a composite control strategy combining stepping mode and scanning mode is proposed in this paper, and an integral back-stepping linear active disturbance rejection control (IB-LADRC) strategy is proposed in the scanning mode control phase. First, the transfer function model of the system in the micromotion part was established, and then the unmodeled part of the system and the external disturbance were treated as the total disturbance and extended to a new system state variable. Second, a linear extended state observer was used as the core of the active disturbance rejection technique to estimate displacement, velocity, and total disturbance in real time. In addition, by introducing virtual control variables, a new control law was designed to replace the original linear control law and improve the positioning accuracy and robustness of the system. Furthermore, the effectiveness of the IB-LADRC algorithm was verified by simulation comparison experiments and experimentally validated on a PSSNS. Finally, experimental results show that the IB-LADRC is a practical solution for a controller capable of handling disturbances during the positioning of a PSSNS with a positioning accuracy of less than 20 nm, which essentially remains constant under load.
    Materialart: Online-Ressource
    ISSN: 0034-6748 , 1089-7623
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2023
    ZDB Id: 209865-9
    ZDB Id: 1472905-2
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  Review of Scientific Instruments Vol. 93, No. 5 ( 2022-05-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 93, No. 5 ( 2022-05-01)
    Kurzfassung: To achieve high speed, nano-resolution, and large stroke, a resonance/non-resonance hybrid piezoelectric stick–slip actuator with a lever-type flexure hinge (LTFH-PSSA) is proposed in this work. The actuator can achieve high speed and large stroke in the resonance mode by the stick–slip working principle and achieve nano-resolution in the non-resonant mode by the direct drive working principle. The excitation electrical signals used in the two working modes are the sine waveform and half-sine waveform, respectively. Compared with the traditional sawtooth waveform, the excitation signal of the sine and half-sine waveforms have no sudden change of voltage, which are more conducive to reduce the impact and vibration of the system. Moreover, a series of static analysis and modal analysis of the stator are carried out by the finite element method. The experimental system is built to test the output characteristics of the LTFH-PSSA. In the resonance state by the stick–slip working principle, the impedance analysis and frequency characteristic test of the LTFH-PSSA are carried out, which states that the tested resonance frequency agrees well with the simulated ones. When the locking force, the voltage, and the frequency are 2 N, 100 Vp–p, and 1850 Hz, the speed of the LTFH-PSSA is up to 52.71 mm/s, and the backward motion is suppressed completely as well. In the non-resonance state, the resolution can reach 2.19 nm and 2.69 nm in the forward and backward motion, respectively. So far, the proposed actuator ranks first in speed and resolution among all reported LTFH-PSSAs.
    Materialart: Online-Ressource
    ISSN: 0034-6748 , 1089-7623
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 209865-9
    ZDB Id: 1472905-2
    SSG: 11
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...