GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cardiovascular Medicine Vol. 8 ( 2021-8-12)
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 8 ( 2021-8-12)
    Abstract: Background: Cardiac hypertrophy was accompanied by various cardiovascular diseases (CVDs), and due to the high global incidence and mortality of CVDs, it has become increasingly critical to characterize the pathogenesis of cardiac hypertrophy. We aimed to determine the metabolic roles of fatty acid binding protein 3 (FABP3) on transverse aortic constriction (TAC)-induced cardiac hypertrophy. Methods and Results: Transverse aortic constriction or Ang II treatment markedly upregulated Fabp3 expression. Notably, Fabp3 ablation aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction. Multi-omics analysis revealed that Fabp3-deficient hearts exhibited disrupted metabolic signatures characterized by increased glycolysis, toxic lipid accumulation, and compromised fatty acid oxidation and ATP production under hypertrophic stimuli. Mechanistically, FABP3 mediated metabolic reprogramming by directly interacting with PPARα, which prevented its degradation and synergistically modulated its transcriptional activity on Mlycd and Gck. Finally, treatment with the PPARα agonist, fenofibrate, rescued the pro-hypertrophic effects of Fabp3 deficiency. Conclusions: Collectively, these findings reveal the indispensable roles of the FABP3–PPARα axis on metabolic homeostasis and the development of hypertrophy, which sheds new light on the treatment of hypertrophy.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 145, No. 11 ( 2022-03-15), p. 829-846
    Abstract: Heart failure is a global public health issue that is associated with increasing morbidity and mortality. Previous studies have suggested that mitochondrial dysfunction plays critical roles in the progression of heart failure; however, the underlying mechanisms remain unclear. Because kinases have been reported to modulate mitochondrial function, we investigated the effects of DYRK1B (dual-specificity tyrosine-regulated kinase 1B) on mitochondrial bioenergetics, cardiac hypertrophy, and heart failure. Methods: We engineered DYRK1B transgenic and knockout mice and used transverse aortic constriction to produce an in vivo model of cardiac hypertrophy. The effects of DYRK1B and its downstream mediators were subsequently elucidated using RNA-sequencing analysis and mitochondrial functional analysis. Results: We found that DYRK1B expression was clearly upregulated in failing human myocardium and in hypertrophic murine hearts, as well. Cardiac-specific DYRK1B overexpression resulted in cardiac dysfunction accompanied by a decline in the left ventricular ejection fraction, fraction shortening, and increased cardiac fibrosis. In striking contrast to DYRK1B overexpression, the deletion of DYRK1B mitigated transverse aortic constriction–induced cardiac hypertrophy and heart failure. Mechanistically, DYRK1B was positively associated with impaired mitochondrial bioenergetics by directly binding with STAT3 to increase its phosphorylation and nuclear accumulation, ultimately contributing toward the downregulation of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α). Furthermore, the inhibition of DYRK1B or STAT3 activity using specific inhibitors was able to restore cardiac performance by rejuvenating mitochondrial bioenergetics. Conclusions: Taken together, the findings of this study provide new insights into the previously unrecognized role of DYRK1B in mitochondrial bioenergetics and the progression of cardiac hypertrophy and heart failure. Consequently, these findings may provide new therapeutic options for patients with heart failure.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health)
    Abstract: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3 −/− mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3 −/− vascular smooth muscle cells under β-glycerophosphate treatment. We integrated CUT & Tag analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH) 2 VitD 3 overload–induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1-attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2024
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Physiological Society ; 2019
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 316, No. 5 ( 2019-05-01), p. H971-H984
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 316, No. 5 ( 2019-05-01), p. H971-H984
    Abstract: Fatty acid-binding protein 3 (FABP3), a low-molecular-weight protein, participates in lipid transportation, storage, signaling transduction, oxidation, and transcription regulation. Here, we investigated the expression and function of FABP3 in ischemic heart diseases and explored the mechanisms by which FABP3 affected remodeling after myocardial infarction (MI). We showed that ischemic or hypoxic conditions upregulated FABP3 expression in vivo and in vitro. Notably, overexpression of FABP3 induced more myocyte apoptosis in the infarction and border areas and aggravated cardiac dysfunction, with lower left ventricular ejection fraction. Meanwhile, overexpression of FABP3 drastically promoted death and apoptosis of neonatal rat ventricular cardiomyocytes under hypoxia. Furthermore, deficiency of FABP3 exerted protective effects against ischemic heart injuries by decreasing cardiac myocyte apoptosis and heart remodeling after MI. We found that overexpression of FABP3 upregulated the phosphorylation of MAPK signaling pathway and decreased phosphorylated Akt levels, which may account for the augmentation of apoptosis and remodeling after MI. To the best of our knowledge, this is the first study to demonstrate that deficiency of FABP3 would protect cardiac myocytes from apoptosis and alleviate cardiac remodeling after MI, suggesting FABP3 as a potential target to preserve cardiac function after MI. NEW & NOTEWORTHY It is an undisputable fact that myocyte apoptosis plays a crucial role in cardiac remodeling and the development of heart failure after myocardial infarction. Here, fatty acid-binding protein 3 deficiency improved myocardial structural remodeling and function by decreasing cell apoptosis and regulating MAPK signaling pathways. We suppose that fatty acid-binding protein 3 may be regarded as a potential intervention approach to preserve cardiomyocytes during myocardial infarction.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2022
    In:  Journal of the American Heart Association Vol. 11, No. 24 ( 2022-12-20)
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 11, No. 24 ( 2022-12-20)
    Abstract: Myocardial infarction (MI) is characterized by the emergence of dead or dying cardiomyocytes and excessive immune cell infiltration after coronary vessel occlusion. However, the complex transcriptional profile, pathways, cellular interactome, and transcriptional regulators of immune subpopulations after MI remain elusive. Methods and Results Here, male C57BL/6 mice were subjected to MI surgery and monitored for 1 day and 7 days, or sham surgery for 7 days, then cardiac CD45‐positive immune cells were collected for single‐cell RNA sequencing to determine immune heterogeneity. A total of 30 135 CD45 + immune cells were partitioned into macrophages, monocytes, neutrophils, dendritic cells, and T or B cells for further analysis. We showed that macrophages enriched for Olr1 and differentially expressed Gpnmb represented 2 crucial ischemia‐associated macrophages with distinct proinflammatory and prophagocytic capabilities. In contrast to the proinflammatory subset of macrophages enriched for Olr1, Gpnmb‐positive macrophages exhibited higher phagocytosis and fatty acid oxidation preference, which could be abolished by etomoxir treatment. In addition to macrophages, MI triggered prompt recruitment of neutrophils into murine hearts, which constituted the sequential cell‐fate from naïve S100a4‐positive, to activated Sell‐high, to aging Icam1‐high neutrophils. In silico tools predicted that the excessively expanded neutrophils at 1 day were attributed to chemokine C‐C motif ligand/chemokine C‐X‐C motif ligand pathways, whereas CD80/inducible T‐cell costimulator (ICOS) signaling was responsible for the immunosuppressive response at day 7 after MI. Finally, the Fos/AP‐1 (activator protein 1) regulon was identified as the critical regulator of proinflammatory responses, which was significantly activated in patients with dilated cardiomyopathy and ischemic cardiomyopathy. We showed the enriched Fos/AP‐1 target gene loci in genome‐wide association study signals for coronary artery diseases and MI. Targeting Fos/AP‐1 with the selective inhibitor T5224 blunted leukocyte infiltration and alleviated cardiac dysfunction in the preclinical murine MI model. Conclusions Taken together, this single‐cell RNA sequencing data lay the groundwork for the understanding of immune cell heterogeneity and dynamics in murine ischemic hearts. Moreover, Fos/AP‐1 inhibition mitigates inflammatory responses and cardiac dysfunction, which might provide potential therapeutic benefits for heart failure intervention after MI.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Cellular and Molecular Medicine, Wiley, Vol. 22, No. 10 ( 2018-10), p. 4985-4996
    Abstract: Acute kidney injury (AKI) incidence among hospitalized patients is increasing steadily. Despite progress in prevention strategies and support measures, AKI remains correlated with high mortality, particularly among ICU patients, and no effective AKI therapy exists. Here, we investigated the function in kidney ischaemia‐reperfusion injury (IRI) of C1orf54, a newly identified protein encoded by an open reading frame on chromosome 1. C1orf54 expression was high in kidney and low in heart, liver, spleen, lung and skeletal muscle in healthy mice, and in the kidney, C1orf54 was expressed in tubular epithelial cells (TECs), but not in glomeruli. C1orf54 expression was markedly decreased on Day 1 after kidney IRI and then gradually recovered to baseline levels by Day 7. Notably, relative to wild‐type mice, C1orf54‐knockout mice exhibited impaired TEC proliferation and delayed recovery after kidney IRI, which led to deteriorated renal function and increased mortality. Conversely, adenovirus‐mediated C1orf54 overexpression promoted TEC proliferation and ameliorated kidney pathology, which resulted in accelerated renal repair and improved renal function. Mechanistically, C1orf54 was found to promote TEC proliferation through PI3K/AKT signalling. Thus, C1orf54 holds considerable potential as a therapeutic target in kidney IRI.
    Type of Medium: Online Resource
    ISSN: 1582-1838 , 1582-4934
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2076114-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Cardiovascular Medicine Vol. 7 ( 2020-12-7)
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 7 ( 2020-12-7)
    Abstract: Advances in single-cell RNA sequencing (scRNA-seq) technology have recently shed light on the molecular mechanisms of the spatial and temporal changes of thousands of cells simultaneously under homeostatic and ischemic conditions. The aim of this study is to investigate whether it is possible to integrate multiple similar scRNA-seq datasets for a more comprehensive understanding of diseases. In this study, we integrated three representative scRNA-seq datasets of 27,349 non-cardiomyocytes isolated at 3 and 7 days after myocardial infarction or sham surgery. In total, seven lineages, including macrophages, fibroblasts, endothelia, and lymphocytes, were identified in this analysis with distinct dynamic and functional properties in healthy and nonhealthy hearts. Myofibroblasts and endothelia were recognized as the central hubs of cellular communication via ligand-receptor interactions. Additionally, we showed that macrophages from different origins exhibited divergent transcriptional signatures, pathways, developmental trajectories, and transcriptional regulons. It was found that myofibroblasts predominantly expand at 7 days after myocardial infarction with pro-reparative characteristics. We identified signature genes of myofibroblasts, such as Postn, Cthrc1, and Ddah1, among which Ddah1 was exclusively expressed on activated fibroblasts and exhibited concordant upregulation in bulk RNA sequencing data and in vivo and in vitro experiments. Collectively, this compendium of scRNA-seq data provides a valuable entry point for understanding the transcriptional and dynamic changes of non-cardiomyocytes in healthy and nonhealthy hearts by integrating multiple datasets.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...