GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2147-2147
    Abstract: The last 20 years have witnessed the identification of an increasing number of druggable oncogenic drivers and the development and clinical use of specific inhibitors against these targets. Unfortunately, patients treated with targeted therapies consistently develop resistance and progression under treatment. Hence, important scientific, pharmaceutical and medical research efforts are directed towards understanding the mechanisms of acquired resistance to explore new therapeutic pathways. The MATCH-R clinical trial enrolls patients with oncogene-driven cancer who have had previous clinical response to targeted therapy and subsequently experienced disease progression. In the framework of this project, Gustave Roussy and XenTech are joining forces to develop a panel of patient-derived xenografts (PDXs) derived from biopsies collected from these patients at the stage of acquired resistance. These PDX models will be used to improve knowledge on the mechanisms underlying resistance to treatment and to evaluate response to new treatments. In this perspective, the development of 75 PDX-AR (Active Resistance) models is planned over 3 years. All the models are maintained under the same therapeutic pressure the parental tumor was submitted to at the time of biopsy, and will be subjected to extensive phenotypic and genotypic characterization. The following models have been established so far: • ENDx-MR-004-AR (endometrial): resistant to the combination of MEK and MDM2 inhibitors; • LCx-MR-007-AR: (NSCLC): resistant to third generation EGFR inhibitor (osimertinib); • UREx-MR-015A-AR (ureter) and VEx-MR-086A-AR (bladder): resistant to a FGFR inhibitor (erdafitinib); • PARx-MR-010-AR (parotid): resistant to a NOTCH Inhibitor; • TCx-MR-122-AR (colon): resistant to an ATR inhibitor. To favor successful xenograft establishment, the first two passages were performed without drug treatment, which was applied from the third passage on. When doing so, some models showed resistance from the first passage under treatment, whereas others showed stabilization under treatment at the first passages and rapidly acquired resistance over passages. These different behaviors might underlie different mechanisms of resistance, irreversible (monoclonal) for the former, reversible (polyclonal) for the latter. Parallel to the development of UREx-MR-015A-AR, we developed the UREx-MR-015B-SD (stable disease) model from a biopsy collected from a different metastasis in the same patient, but stabilized by the therapy. Comparative analysis of these two models will provide important insights into the mechanisms of resistance to FGFR inhibitors. The MATCH-R PDX project will provide a unique preclinical platform for identifying resistance mechanisms to current targeted therapies and developing next generation therapeutic strategies. Citation Format: Olivier Déas, Ludovic Bigot, Guillaume Lang, Yohann Loriot, Fabrice Andre, Jean Charles Soria, Benjamin Besse, Stefano Cairo, Marie Tavernier, Katell Mevel, Enora Le Ven, Jean-Gabriel Judde, Luc Friboulet. Development of preclinical models to accelerate the identification of next generation treatments for patients with acquired resistance to targeted therapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2147.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2122-2122
    Abstract: The last 20 years have witnessed the identification of an increasing number of actionable oncogenic drivers and the development and clinical use of specific inhibitors against these targets. Unfortunately, patients treated with targeted therapies consistently develop resistance and progression under treatment. Hence, important scientific, pharmaceutical and medical research efforts are directed towards understanding the mechanisms of acquired resistance to explore new therapeutic pathways. The MATCH-R clinical trial enrolls patients with oncogene-driven cancer who have had previous clinical response to targeted therapy and subsequently experienced disease progression. In the framework of this project, Gustave Roussy and XenTech are joining forces to develop a panel of patient-derived xenografts (PDXs) derived from biopsies collected from these patients at the stage of acquired resistance. These PDX models will be fully characterized at molecular and pharmacological level and used to improve knowledge on the mechanisms underlying resistance to treatment and to evaluate response to new treatments. In this perspective, the development of 75 PDX-AR (Acquired Resistance) models is planned over 3 years. All the models are maintained under the same therapeutic pressure the parental tumor was submitted to at the time of biopsy, and will be subjected to extensive phenotypic and genotypic characterization. To favor successful xenograft establishment, the first two passages are performed without drug treatment, which is applied from the third passage on. When doing so, we observed 3 types of response: some models showed resistance from the first passage under treatment, some showed stabilization under treatment at the first passages and rapidly acquired resistance over passages, and others showed sensitivity to treatment, whereas the patient tumor showed progression under the same treatment. These different behaviors might be due to different mechanisms of resistance, irreversible for the former, reversible for the two latter, as well as to suboptimal correlation of the clinical dose with the one used in mice. An example of such discrepancies has been found in two models of NSCLC PDX obtained from two metastases from a patient treated by a ROS1 and ALK inhibitor. While LCx-MR135PD2-AR PDX does not respond to the treatment, the LCx-MR135PD1 model is highly sensitive. As both metastases were progressing under treatment in the patient, molecular and pharmacological comparative analysis of these two models will investigate these discrepancy and provide important insights into the mechanisms of resistance to such inhibitors. Overall, the MatchR PDX project will provide a unique preclinical platform to identify resistance mechanisms to current targeted therapies and to develop next generation therapeutic strategies. Citation Format: Olivier Déas, Ludovic Bigot, Emilie Dasse, Guillaume Lang, Yohann Loriot, Fabrice Andre, Jean-Charles Soria, Benjamin Besse, Stefano Cairo, Marie Tavernier, Katell Mevel, Enora Le Ven, Jean-Gabriel Judde, Luc Friboulet. Generation of a fully characterized preclinical PDX panel to accelerate the identification of next generation treatments for patients with acquired resistance to targeted therapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2122.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 24 ( 2016-12-15), p. 5983-5991
    Abstract: Background: The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non–small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. Methods: A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)–ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Results: Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Conclusions: Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983–91. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 318-318
    Abstract: Background: Molecular alterations involving FGFR family genes (FGFR 1-4) are emerging driver events in a variety of solid tumors, mainly represented by urothelial carcinoma (UC) and intrahepatic cholangiocarcinoma (CC). Several tyrosine kinase inhibitors (TKI) are in clinical development to counteract FGFR-driven diseases, being especially active against activating gene mutations and rearrangements. Progression on these targeted agents eventually appears and the understanding of molecular mechanisms of resistance is crucial to develop novel strategies. Methods: In the MATCH-R prospective study (NCT02517892), patients with unresectable or metastatic cancer are included upon acquired resistance to targeted therapies or immunotherapy, defined as progressive disease after complete/partial response or stable disease for six months. Serial blood samples are collected and tumor biopsy is performed upon progression. Targeted NGS, CGH, WES and RNAseq are performed on the tissue samples. PDX models and patient-derived cell lines are developed to fully investigate the underlying mechanisms of resistance. Only patients receiving TKI for FGFR-mutated or -rearranged tumors were included (i.e. FGFRamplifications were excluded) in the analysis. Results: From June 2015 to November 2018, 113 patients treated with a TKI were included in the MATCH-R study, of which 17 (15%) had received an FGFR inhibitor. Tumor types and corresponding molecular aberrations were as follows: 8 CC (n=6 FGFR2-rearranged, n=1 FGFR2:C383R, n=1 FGFR3:S249C), 7 UC (n=5 FGFR3:S249C, n=1 FGFR3:R248C, n=1 FGFR3:Y373C), 1 breast (FGFR3-rearranged) and 1 ovarian (FGFR2-rearranged) cancers. Evaluable tumor biopsies were taken upon progression to treatment with erdafitinib (n=12), pemigatinib (INCB54828) (n=3) or TAS-120 (n=4). Two patients underwent multiple biopsies as progressing on sequential FGFR inhibitors. Resistance mechanisms consisted of polyclonal secondary mutations (n=5), bypass pathways activation (n=3) and the remaining nine cases are still under investigation. PDX models/patient-derived cell lines were obtained in eight cases and extensively characterized in three. Adaptive treatment with novel FGFR TKI or combinatorial strategies aiming to block the bypass pathways allowed to restore sensitivity in both cell lines (readouts: IC50 and Western Blots) and PDX (readout: median tumor growth). Novel mutations potentially implicated in resistance to FGFR TKI were characterized by infecting Ba/F3 cells with respective lentiviral vectors, as well as the inhibitory potential of the differential FGFR inhibitors. Conclusions: Novel mechanisms of resistance to FGFR inhibitors in solid tumors were identified and consequent treatment strategies allowed to regain sensitivity in both patient-derived cell lines and PDX. Updated results will be presented at the Meeting. Citation Format: Francesco Facchinetti, Rastislav Bahleda, Antoine Hollebecque, Yohann Loriot, Gonzalo Recondo, Ludovic Bigot, Ken A. Olaussen, Gilles Vassal, Stefan Michiels, Rosa L. Frias, Justine Galissant, Tony Sourisseau, Claudio Nicotra, Maud Ngo-Camus, Linda Mahjoubi, Ludovic Lacroix, Etienne Rouleau, Catherine Richon, Aurélie Abou-Lovergne, Olivier Deas, Nathalie Auger, Thierry De Baere, Frederic Deschamps, Eric Solary, Jean-Yves Scoazec, Eric Angevin, Alexander Eggermont, Fabrice André, Benjamin Besse, Jean-Paul Thiery, Jean-Charles Soria, Christophe Massard, Luc Friboulet. Mechanisms of acquired resistance to FGFR inhibitors in molecularly-selected solid tumors: A prospective cohort from the MATCH-R study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 318.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: BMC Cancer, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2016-12)
    Type of Medium: Online Resource
    ISSN: 1471-2407
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2041352-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 3015-3015
    Abstract: 3015 Background: Use of antibiotics (ATB) alters the gut microbiota composition and decreases bacterial diversity. Pre-clinical evidences demonstrated the impact of the microbiota in the efficacy of immune checkpoint blockades (ICB) in cancer. Interaction between ATB and ICB has not been extensively investigated in cancer patients (pts). Our study evaluated the effect of ATB in cancer pts treated with PD-1/PD-L1 inhibitors. Methods: We conducted a retrospective analysis of pts treated with PD-1/PD-L1 inhibitors for advanced Renal Cell Carcinoma (RCC), Urothelial Cancer (UC) and Non-Small Cell Lung Cancer (NSCLC) and data on ATB use were collected. ATB(+)/(-) groups were defined as pts treated or not with ATB before (2 months period) or within the first month of ICB. PFS and OS were compared between both groups among all pts and then according to tumor site. Statistical analyses were performed using the Kaplan-Meier method. Cox regression analyses were performed separately for each cancer type adjusting for its specific risk factors. Results: Among 175 pts included, 51 (29%) received ATB (mostly beta-lactamases and fluoroquinolones). ATB(+) group had shorter PFS and OS when compared to ATB(-) group: 3.4 vs. 5.2 months, p 〈 0.013, and 12.2 vs. 20.8 months, p 〈 0.001, respectively. According to tumor type, ATB(+) group translated into decrease OS (7.0 vs. 13.8 months, p 〈 0.038) in NSCLC. In RCC and UC pts, ATB (+) group had shorter PFS when compared to ATB(-) group (4.3 vs. 7.4 months, p 〈 0.013 and 1.8 vs. 4.3 months, p = 0.048, respectively). The negative impact of ATB was maintained after multivariate analyses adjusting for risk factors in each tumor type. Conclusions: ATB prescription preceding or concomitant to the first injection of PD-1/PD-L1 inhibitors impaired the outcome in patients with advanced cancers. This reduction in efficacy seems to be independent of classical prognostic factors in RCC, UC and NSCLC. These data should be validated in larger cohort. In addition, the role of gut composition to explain this interaction is ongoing, as well as novel diagnosis tools based on microbiota to predict response/resistance to ICB.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...