GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (4)
  • Long, Jinhu  (4)
Material
Publisher
  • Optica Publishing Group  (4)
Person/Organisation
Language
Years
  • 1
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 9 ( 2021-04-26), p. 13428-
    Abstract: Light beams carrying orbital angular momentum (OAM) have important implications for future classical and quantum systems. In many applications, controlled switching of the OAM state at high speed is crucial, while accelerating the switching rate presents a long-standing challenge. Here we present a method for flexibly switching the OAM state of light based on a coherent laser array system. In the system, the output structured light beam is tailored by the coherent combination of array elements. By employing an OAM mode sorting assisted phase control subsystem, which continuously performs the optimization algorithm, the dynamic wavefront distortion of the combined OAM beam could be compensated. Meanwhile, our approach allows one to achieve fast states switching of the combined OAM beam via programming the cost function of the algorithm. The results of Monte-Carlo simulations demonstrate the feasibility of the proposed method, and the mode purity and power scaling potential of the controllably generated OAM beam are discussed. This theoretical work could be beneficial to the future implementation of rapidly switchable OAM beams at practical output power.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Optics Express Vol. 30, No. 9 ( 2022-04-25), p. 15279-
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 9 ( 2022-04-25), p. 15279-
    Abstract: Since the advent of optical orbital angular momentum (OAM), advances in the generation and manipulation of OAM beams have continuously impacted on intriguing applications including optical communication, optical tweezers, and remote sensing. To realize the generation of high-power and fast switchable OAM beams, coherent combining of fiber lasers offers a promising way. Here in this contribution, we comprehensively investigate the coherent fiber laser array system for structuring OAM beams in terms of the design considerations and performance analysis. The performance metric and evaluation method of the laser array system are presented and introduced. Accordingly, the effect of the main sections of the laser array system, namely the high-power laser sources, emitting array configuration, and dynamic control system, on the performance of the output coherently combined OAM beams is evaluated, which reveals the system tolerance of perturbative factors and provides the guidance on system design and optimization. This work could provide beneficial reference on the practical implementation of spatially structuring high-power, fast switchable OAM beams with fiber laser arrays.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Letters Vol. 46, No. 15 ( 2021-08-01), p. 3665-
    In: Optics Letters, Optica Publishing Group, Vol. 46, No. 15 ( 2021-08-01), p. 3665-
    Abstract: Owing to the unique features in intensity and phase structures, optical vortex lattices (OVLs) have attracted intensive attention and promoted various applications. However, the power scaling of OVLs always presents a critical challenge. Here we take advantage of the brightness enhancement of coherent beam combining (CBC) technology and propose an architecture for creating OVLs based on the CBC system. In the experiment, by utilizing the stochastic parallel gradient descent algorithm, the dynamic phase noises were compensated. The desired piston phase shifting of each element for tailoring the structured wavefront was implemented by the liquid crystal. When the system in a closed loop, hexagonal close-packed OVL consists of spatially distributed orbital angular momentum, beams can be generated in the far-field. This work is an important step toward future implementation of high-power structured light beams.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Optics, Optica Publishing Group, Vol. 61, No. 34 ( 2022-12-01), p. 10222-
    Abstract: Coherent beam combining (CBC) of a fiber laser can scale the output power while maintaining high beam quality. However, phase detection and control remain a challenge for a high-power CBC system with a massive laser array. This paper provides a novel, to the best of our knowledge, cascaded phase-control technique based on internal phase detection and control, called the cascaded internal phase-control technique. The principle of the technique was introduced in detail, and the numerical simulations were carried out based on the stochastic parallel gradient descent (SPGD) algorithm. The results indicated that the cascaded internal phase-control technique was compatible with the massive laser array. Compared with the traditional CBC based on the SPGD algorithm, the control bandwidth could be improved effectively about seven times (120 steps) than the traditional SPGD algorithm (830 steps). Furthermore, the average root mean square of residual phase error was decreased to 0.03 rad ( ∼ λ / 209 ) with a laser array of 259 channels ( 7 ∗ 37 ), which was 0.36 rad ( ∼ λ / 17 ) in the traditional SPGD algorithm. In addition, the element expanding capacity was analyzed. Since there is no large-aperture optical device in the phase-detection system, this technique has the advantage of freely designing the caliber of the laser emitting system. This paper could offer a reference for the high-power massive laser array system design and phase control.
    Type of Medium: Online Resource
    ISSN: 1559-128X , 2155-3165
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 207387-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...