GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 5298-5298
    Abstract: Abstract 5298 Introduction: Magnetic Resonance (MR) is the unique non invasive suitable technique to evaluate quantitatively the changes in cardiac and hepatic iron and in cardiac function in thalassemia major (TM) patients under different chelation regimens. This study aimed to prospectively assess the efficacy of the sequential deferiprone–deferrioxamine (DFP-DFO) versus deferiprone (DFP) and deferrioxamine (DFO) in monotherapy in a large cohort of TM patients by quantitative MR. Methods: Among the first 1135 TM patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network, 392 patients performed a MR follow up study at 18±3 months. We evaluated prospectively the 35 patients treated with DFP-DFO versus the 39 patients treated with DFP and the 74 patients treated with DFO between the 2 MR scans. Iron concentrations were measured by T2* multiecho technique. Biventricular function parameters were quantitatively evaluated by cine images. Results: Excellent/good levels of compliance were similar in the DFP-DFO (97.1%) versus DFP (94.9%) and DFO (95.9%) groups. No significant differences were found in the frequency of side effects in DFP-DFO (15.6%) versus DFP group (9.4%). The percentage of patients who maintained a normal global heart T2* value (≥20 ms) was comparable between DFP-DFO (96%) versus DFP (100%) and DFO (98.1%) groups. Among the patients with myocardial iron overload (MIO) at baseline (global heart T2* 〈 20 ms), in all three groups there was a significant improvement in the global heart T2* value (DFO-DFP: P=0.004, DFP: P=0.015 and DFO: ms P=0.007) and a significant reduction in the number of pathological segments (DFO-DFP: P=0.026, DFP: P=0.012 and DFO: P=0.002). In DFO-DFP and DFP groups there was a significant increment in the left ventricular (LV) ejection fraction (EF) (P=0.035 and P=0.045, respectively) as well as in the right ventricular (RV) EF (P=0.017 and P=0.001, respectively). The improvement in the global heart T2* and in biventricular function were not significantly different in DFO-DFP compared to the other groups (Table 1). Among the patients with hepatic iron at baseline (T2* 〈 9.2 ms), only in DFO group there was a significant improvement in the liver T2* value (2.0±3.5 ms P=0.010). Liver T2*changes were not significantly different in DFO-DFP versus the other groups. Conclusions: Prospectively we did not find significant differences on cardiac and hepatic iron or in cardiac function in TM patients treated with sequential DFP–DFO therapy versus the TM patients treated with DFO or DFP in monotherapy. Disclosures: Pepe: Novartis: Speakers Bureau; Apotex: Speakers Bureau; Chiesi: Speakers Bureau. Off Label Use: Association of two chelators commercially available in order to obtain a higher efficacy. Lai:Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 3872-3872
    Abstract: Despite dramatic gains in life expectancy in the desferrioxamine era for thalassemia major patients, the leading cause of death for this young adult’s population remains iron-induced heart failure. For this reason, strategies to reduce heart disease by improving chelation regimens have the highest priority in this phase. These strategies include development of novel oral iron chelators to improve compliance. Oral deferipron was proved more effective than subcutaneous desferrioxamine in removing cardiac iron. The novel oral one-daily chelator deferasirox has been recently commercially available but its long-term efficacy on myocardial iron concentrations and cardiac function is unknown. Aim of this study was to compare in thalassemia major patients the effectiveness of deferasirox, deferipron, and desferrioxamine on myocardial and liver iron concentrations and bi-ventricular function by quantitative magnetic-resonance imaging (MRI). Among the 550 thalassemic subjects enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network between September 2006 and September 2007, we selected patients receiving one chelator alone for longer than one year. MIOT is an Italian network of six MR sites where the cardiac and liver iron status is assessed by validated and homogeneous standard procedures. We identified three groups of patients: 24 treated with deferasirox, 42 treated with deferipron and 89 treated with desferrioxamine. The three groups were matched for gender, Hb pre-transfusion levels, age of starting chelation, and good compliance to the treatment. The deferasirox group was significantly younger (26±7 years) than the deferipron (32±9 years) and desferioxamine group (33±8 years) (P=0.0001) and showed significantly higher mean serum ferritin levels (2516±2106 ng/ml) than the deferipron (1493±1651 ng/ml) and the desferrioxamine group (987±915 ng/ml) (P=0.0001). Myocardial iron concentrations and distribution were measured by MRI T2* multislice multiecho technique. Biventricular function parameters were quantitatively evaluated by cine-dynamic MRI images. Liver iron concentrations were measured by MR T2* multiecho technique. Written informed consent was obtained from all subjects. The global heart T2* value was significantly higher in the deferipron group (34±11 ms) versus the deferasirox (21±12 ms) and the desferrioxamine group (27±11 ms) (P=0.0001), as showed in Figure A. The T2* in the mid ventricular septum was significantly higher in the deferipron (36 ± 12 ms) versus the deferasirox (20 ± 12 ms) and the desferrioxamine group (28 ± 13 ms) (P = 0.0001). The number of segments with normal T2* value was significantly higher in the deferipron and the desferrioxamine group versus the deferasirox group (14 ± 2 versus 11 ± 6 versus 7 ± 7 segments; P = 0.0001). Among the biventricular function parameters, we found higher left ventricular ejection fractions in the deferipron and the desferrioxamine group versus the deferasirox group (64 ± 7 versus 62 ± 6 versus 58 ± 7 %; P = 0.005), as showed in Figure B. Liver T2* values were significantly higher in the desferrioxamine group versus the deferipron and the deferasirox group (10 ± 9 versus 6 ± 6 versus 5 ± 5 segments; P = 0.002). In conclusion, Oral deferipron seems to be more effective than oral deferasirox and subcutaneous desferrioxamine in removal of myocardial iron with concordant positive effect on left global systolic function. Figure Figure
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 5293-5293
    Abstract: Abstract 5293 Introduction. Cardiovascular Magnetic Resonance (CMR) has provided the opportunity to quantify right ventricular (RV) parameters with excellent reproducibility and accuracy. The role of the RV is gaining ground in thalassemia major (TM) patients and this population could experience different “normal” RV values due to chronic anemia and eventually pre-existing iron burdens. The aim of this study was to establish the ranges for normal RV volumes, mass and ejection fraction (EF) normalized to the influence of body surface area (BSA), age and sex from CMR in a large cohort of well-treated TM patients without myocardial iron overload. Methods. Among the 923 TM patients enrolled in the Myocardial Iron Overload (MIOT) network who underwent CMR for the assessment of cardiac iron overload, function and fibrosis, we selected 142 patients with no known risk factors or history of cardiac disease, normal electrocardiogram, no myocardial iron overload (all the cardiac segments with a normal T2* value) and no myocardial fibrosis. All patients had been regularly transfused and chelated since early childhood. Moreover, we studied 71 healthy subjects matched for age and sex. RV function parameters were quantitatively evaluated in a standard way by SSFP cine images using MASS® software. RV end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV) were normalized by body surface area (EDVI, ESVI, SVI). Results. The table shows the comparison of the CMR parameters with differentiation for sex and age in TM patients and healthy subjects and the cut-off of normality defined as mean – 2 standard deviation (SD). TM patients showed significantly lower BSA than the controls (P 〈 0.0001). TM males (except age group 14–20 yrs) showed significantly higher RV EF compared to controls. In TM patients all LV volumes indexes were significantly larger in males than in females (P 〈 0.0001 in all age groups). The EF was not different between the sexes. In males as well as in females the RV volumes were no significant different among the age groups, while in males the EF was significant different (P=0.004). Conclusion. In a large cohort of well-treated TM patients males showed significantly higher RV EF compared to controls. Due to the influence of BSA, sex and age, appropriate “normal” reference ranges normalized to these variables should be used to avoid misdiagnosis of cardiomyopathy in the clinical arena in TM patients. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1087-1087
    Abstract: Abstract 1087 Introduction: No data are available in literature about possible different changes in cardiac and hepatic iron and in cardiac function in thalassemia major (TM) patients treated with sequential deferipron–desferrioxamine (DFP-DFO) versus deferasirox (DFX). Magnetic Resonance (MR) is the unique non invasive suitable technique to evaluated quantitatively this issue.Our aim was to prospectively assess the efficacy of the DFP-DFO vs DFX in a large cohort of TM patients by quantitative MR. Methods: Among the first 1135 TM patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network, 392 patients performed a MR follow up study at 18 ± 3 months according to the protocol. We evaluated prospectively 35 patients treated with DFP-DFO versus 80 patients treated with DFX between the 2 MR scans. Cardiac iron was evaluated by T2* multiecho multislice technique. Biventricular function parameters were quantitatively evaluated by cine images. Liver iron was measured by T2* multiecho technique. Results: Excellent/good levels of compliance were similar in the two groups (DFP-DFO 97.1% vs DFX 98.8%; P=0.544). Among the patients with no significant myocardial iron overload (MIO) at baseline (global heart T2*≥20 ms), there were no significant differences between groups to maintain the patients without myocardial iron overload (DFP-DFO 96% vs DFX 98%; P=0.536). Among the patients with MIO at baseline, in both groups there was a significant improvement in the global heart T2* value (DFP-DFO: 4.8±3.9 ms P=0.004 and DFX: 3.5±4.7 P=0.001) and a significant reduction in the number of pathological segments (DFP-DFO: −3.2±3.8 P=0.026 and DFX: −2.4±3.8 P=0.003). Only in sequential group there was a significant increment in the left and right ventricular ejection fractions (4.3±5.1% P=0.035 and 6.7±6.6% P=0.017, respectively). The improvement in the global heart T2* was not significantly different between groups. The improvement in the left as well in the right ventricular ejection fractions was significantly different between groups (P=0.009 and P=0.015, respectively) (Figure 1). Among the patients with hepatic iron at baseline (T2* 〈 9.2 ms), only in the DFX group there was a significant improvement in the liver T2* value (2.6±5.3 ms P=0.001). The changes in liver T2* were significantly higher in DFX group than in DFP-DFO (0.5±2.0 ms) group (P=0.030) (Figure 2). Conclusions: In TM patients prospectively no significant differences on cardiac iron were found between sequential DFP–DFO treatment versus DFX in monoterapy, although the DFP-DFO treatment was significantly more effective in improving biventricular global systolic function. Conversely, DFX was significantly more effective in reducing hepatic siderosis. Disclosures: Pepe: Novartis: Speakers Bureau; Apotex: Speakers Bureau; Chiesi: Speakers Bureau. Off Label Use: Association of two chelators commercially available in order to obtain a higher efficacy. Borgna-Pignatti:Apotex: Honoraria; Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...