GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
  • Liu, Zhe  (2)
Material
Publisher
  • AIP Publishing  (2)
Language
Years
Subjects(RVK)
  • 1
    In: APL Materials, AIP Publishing, Vol. 9, No. 3 ( 2021-03-01)
    Abstract: Ultra-thin polymeric dielectrics are of great interest for the ever-increasing development of high-performance novel electronics. Up to date, the fabrication of polymer layers as thin as few nanometers is still an extremely demanding process. Here, we report a facile method to fabricate molecularly thin (4 nm–5 nm) plasma-hardened photoresist (PHPR) layers by applying O2 plasma to treat the surface of the photoresist (SPR 220) to cross-link the constituent novolac resin. It is found that such ultra-thin PHPR layers also possess molecular-scale smoothness, superior chemical resistance, and thermal endurance. Furthermore, we develop an in situ transfer technique that is compatible with the planar process to stabilize the patterning of the PHPR layers. By using PHPR layers as the gate dielectric and tunneling barrier (breakdown strength up to 500 kV/mm), a graphene-PHPR-graphene (G-PHPR-G) sandwich-like structure is demonstrated, exhibiting a high photo-responsivity ( & gt;13 A/W) under low operating voltages ( & lt;1 V), which enables the ultra-thin PHPR layers to be a very promising candidate for the dielectrics in low-power, flexible electronic applications.
    Type of Medium: Online Resource
    ISSN: 2166-532X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2722985-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 113, No. 23 ( 2018-12-03)
    Abstract: Ge2Sb2Te5 (GST) is a kind of non-volatile chalcogenide phase-change material, which has a significant difference in permittivity between its amorphous and crystalline states in the infrared range. On account of this remarkable property, the combination of GST and metamaterials has great potential in tunable meta-devices. In this paper, a perfect absorber based on a nanocross-resonator array stacked above a GST spacer layer and an Au mirror (i.e., a metal-dielectric-metal configuration) is designed and experimentally demonstrated. A thin indium tin oxide (ITO) protective layer is inserted between the GST spacer and the Au resonator to avoid heat-induced oxidation of the GST layer during phase transition. We found that the ITO layer not only can protect the GST layer from deterioration, but also allows a significant blue shift in the absorption peak from 1.808 μm to 1.559 μm by optimizing the thickness of the two dielectric layers without scaling down the size of the metal structure, which provides a more feasible idea in pushing the absorption peak to higher frequency. The LC circuit model is presented to explain this blue-shift phenomenon, which is mainly attributed to the engineering of the dielectric environment of the parallel plate capacitance. In addition, such good performance in dynamitic modulation makes this perfect absorber a robust candidate for optical switching and modulating in various situations.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...