GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Liu, Yanlan  (2)
  • 2020-2024  (2)
  • Chemie/Pharmazie  (2)
Materialart
Verlag/Herausgeber
Sprache
Erscheinungszeitraum
  • 2020-2024  (2)
Jahr
Fachgebiete(RVK)
  • Chemie/Pharmazie  (2)
RVK
  • 1
    In: Angewandte Chemie, Wiley, Vol. 133, No. 17 ( 2021-04-19), p. 9648-9658
    Kurzfassung: Chemodynamic therapy is an emerging tumor therapeutic strategy. However, the anticancer effects are greatly limited by the strong acidity requirements for effective Fenton‐like reaction, and the inevitably “off‐target” toxicity. Herein, we develop an acidity‐unlocked nanoplatform (FePt@FeO x @TAM‐PEG) that can accurately perform the high‐efficient and tumor‐specific catalysis for anticancer treatment, through dual pathway of cyclic amplification strategy. Notably, the pH‐responsive peculiarity of tamoxifen (TAM) drug allows for the catalytic activity of FePt@FeO x to be “turn‐on” in acidic tumor microenvironments, while keeping silence in neutral condition. Importantly, the released TAM within cancer cells is able to inhibit mitochondrial complex I, leading to the upregulated lactate content and thereby the accumulated intracellular H + , which can overcome the intrinsically insufficient acidity of tumor. Through the positive feedback loop, large amount of active FePt@FeO x nanocatalyzers are released and able to access to the endogenous H 2 O 2 , exerting the improved Fenton‐like reaction within the more acidic condition. Finally, such smart nanoplatform enables self‐boosting generation of reactive oxygen species (ROS) and induces strong intracellular oxidative stress, leading to the substantial anticancer outcomes in vivo, which may provide a new insight for tumor‐specific cascade catalytic therapy and reducing the “off‐target” toxicity to surrounding normal tissues.
    Materialart: Online-Ressource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2021
    ZDB Id: 505868-5
    ZDB Id: 506609-8
    ZDB Id: 514305-6
    ZDB Id: 505872-7
    ZDB Id: 1479266-7
    ZDB Id: 505867-3
    ZDB Id: 506259-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Angewandte Chemie International Edition, Wiley, Vol. 60, No. 17 ( 2021-04-19), p. 9562-9572
    Kurzfassung: Chemodynamic therapy is an emerging tumor therapeutic strategy. However, the anticancer effects are greatly limited by the strong acidity requirements for effective Fenton‐like reaction, and the inevitably “off‐target” toxicity. Herein, we develop an acidity‐unlocked nanoplatform (FePt@FeO x @TAM‐PEG) that can accurately perform the high‐efficient and tumor‐specific catalysis for anticancer treatment, through dual pathway of cyclic amplification strategy. Notably, the pH‐responsive peculiarity of tamoxifen (TAM) drug allows for the catalytic activity of FePt@FeO x to be “turn‐on” in acidic tumor microenvironments, while keeping silence in neutral condition. Importantly, the released TAM within cancer cells is able to inhibit mitochondrial complex I, leading to the upregulated lactate content and thereby the accumulated intracellular H + , which can overcome the intrinsically insufficient acidity of tumor. Through the positive feedback loop, large amount of active FePt@FeO x nanocatalyzers are released and able to access to the endogenous H 2 O 2 , exerting the improved Fenton‐like reaction within the more acidic condition. Finally, such smart nanoplatform enables self‐boosting generation of reactive oxygen species (ROS) and induces strong intracellular oxidative stress, leading to the substantial anticancer outcomes in vivo, which may provide a new insight for tumor‐specific cascade catalytic therapy and reducing the “off‐target” toxicity to surrounding normal tissues.
    Materialart: Online-Ressource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2021
    ZDB Id: 2011836-3
    ZDB Id: 123227-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...