GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liu, Xi  (2)
  • Wa, Shiyun  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Remote Sensing Vol. 14, No. 4 ( 2022-02-14), p. 923-
    In: Remote Sensing, MDPI AG, Vol. 14, No. 4 ( 2022-02-14), p. 923-
    Abstract: There has been substantial progress in small object detection in aerial images in recent years, due to the extensive applications and improved performances of convolutional neural networks (CNNs). Typically, traditional machine learning algorithms tend to prioritize inference speed over accuracy. Insufficient samples can cause problems for convolutional neural networks, such as instability, non-convergence, and overfitting. Additionally, detecting aerial images has inherent challenges, such as varying altitudes and illuminance situations, and blurred and dense objects, resulting in low detection accuracy. As a result, this paper adds a transformer backbone attention mechanism as a branch network, using the region-wide feature information. This paper also employs a generative model to expand the input aerial images ahead of the backbone. The respective advantages of the generative model and transformer network are incorporated. On the dataset presented in this study, the model achieves 96.77% precision, 98.83% recall, and 97.91% mAP by adding the Multi-GANs module to the one-stage detection network. These three indices are enhanced by 13.9%, 20.54%, and 10.27%, respectively, when compared to the other detection networks. Furthermore, this study provides an auto-pruning technique that may achieve 32.2 FPS inference speed with a minor performance loss while responding to the real-time detection task’s usage environment. This research also develops a macOS application for the proposed algorithm using Swift development technology.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Symmetry, MDPI AG, Vol. 13, No. 12 ( 2021-12-12), p. 2395-
    Abstract: Automatic segmentation of intracranial brain tumors in three-dimensional (3D) image series is critical in screening and diagnosing related diseases. However, there are various challenges in intracranial brain tumor images: (1) Multiple brain tumor categories hold particular pathological features. (2) It is a thorny issue to locate and discern brain tumors from other non-brain regions due to their complicated structure. (3) Traditional segmentation requires a noticeable difference in the brightness of the interest target relative to the background. (4) Brain tumor magnetic resonance images (MRI) have blurred boundaries, similar gray values, and low image contrast. (5) Image information details would be dropped while suppressing noise. Existing methods and algorithms do not perform satisfactorily in overcoming these obstacles mentioned above. Most of them share an inadequate accuracy in brain tumor segmentation. Considering that the image segmentation task is a symmetric process in which downsampling and upsampling are performed sequentially, this paper proposes a segmentation algorithm based on U-Net++, aiming to address the aforementioned problems. This paper uses the BraTS 2018 dataset, which contains MR images of 245 patients. We suggest the generative mask sub-network, which can generate feature maps. This paper also uses the BiCubic interpolation method for upsampling to obtain segmentation results different from U-Net++. Subsequently, pixel-weighted fusion is adopted to fuse the two segmentation results, thereby, improving the robustness and segmentation performance of the model. At the same time, we propose an auto pruning mechanism in terms of the architectural features of U-Net++ itself. This mechanism deactivates the sub-network by zeroing the input. It also automatically prunes GenU-Net++ during the inference process, increasing the inference speed and improving the network performance by preventing overfitting. Our algorithm’s PA, MIoU, P, and R are tested on the validation dataset, reaching 0.9737, 0.9745, 0.9646, and 0.9527, respectively. The experimental results demonstrate that the proposed model outperformed the contrast models. Additionally, we encapsulate the model and develop a corresponding application based on the MacOS platform to make the model further applicable.
    Type of Medium: Online Resource
    ISSN: 2073-8994
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518382-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...