GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (18)
  • Liu, Suixin  (18)
Material
Publisher
  • Copernicus GmbH  (18)
Language
Years
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 11 ( 2016-06-14), p. 7373-7387
    Abstract: Abstract. Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including “north-low”, “southwest-trough”, “southeast-high”, “transition”, “southeast-trough”, and “inland-high”. The FLEXPART model has been utilized to demonstrate the corresponding pollutant transport patterns for the typical synoptic situations in the basin. Except for “southwest-trough” and “southeast-high” (defined as favorable synoptic situations), the other four synoptic conditions (defined as unfavorable synoptic situations) generally facilitate the accumulation of air pollutants, causing heavy air pollution in the basin. In association with the measurement of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in the basin, the unfavorable synoptic situations correspond to high PM2.5 mass concentrations or poor air quality and vice versa. The same analysis has also been applied to winters of 2008–2012, which shows that the basin was mainly influenced by the unfavorable synoptic situations during wintertime leading to poor air quality. The WRF-CHEM model has further been applied to simulate the selected 6 days representing the typical synoptic situations during the wintertime of 2013, and the results generally show a good agreement between the modeled distributions and variations of PM2.5 and the corresponding synoptic situations, demonstrating reasonable classification for the synoptic situations in the basin. Detailed meteorological conditions, such as temperature inversion, low-level horizontal wind speed, and planetary boundary layer, all contribute to heavy air pollution events in the basin under unfavorable synoptic conditions. Considering the proportion of occurrence of unfavorable synoptic situations during wintertime, reduction of emissions is the optimum approach to mitigate the air pollution in the Guanzhong basin.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 5 ( 2017-03-07), p. 3301-3316
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 5 ( 2017-03-07), p. 3301-3316
    Abstract: Abstract. Rapid industrialization and urbanization have caused frequent occurrence of haze in China during wintertime in recent years. The sulfate aerosol is one of the most important components of fine particles (PM2. 5) in the atmosphere, contributing significantly to the haze formation. However, the heterogeneous formation mechanism of sulfate remains poorly characterized. The relationships of the observed sulfate with PM2. 5, iron, and relative humidity in Xi'an, China have been employed to evaluate the mechanism and to develop a parameterization of the sulfate heterogeneous formation involving aerosol water for incorporation into atmospheric chemical transport models. Model simulations with the proposed parameterization can successfully reproduce the observed sulfate rapid growth and diurnal variations in Xi'an and Beijing, China. Reasonable representation of sulfate heterogeneous formation in chemical transport models considerably improves the PM2. 5 simulations, providing the underlying basis for better understanding the haze formation and supporting the design and implementation of emission control strategies.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Chemistry and Physics Vol. 18, No. 18 ( 2018-09-27), p. 13673-13685
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 18 ( 2018-09-27), p. 13673-13685
    Abstract: Abstract. The black carbon (BC) deposition on the ice core at Muztagh Ata Mountain, northern Tibetan Plateau, was analyzed. Two sets of measurements were used in this study, which included the air samplings of BC particles during 2004–2006 and the ice core drillings of BC deposition during 1986–1994. Two numerical models were used to analyze the measured data. A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions, and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo. The results show that during 1991–1992, there was a strong spike in the BC deposition at Muztagh Ata, suggesting that there was an unusual emission in the upward region during this period. This high peak of BC deposition was investigated by using the global chemical transportation model (MOZART-4). The analysis indicated that the emissions from large Kuwait fires at the end of the first Gulf War in 1991 caused this high peak of the BC concentrations and deposition (about 3–4 times higher than other years) at Muztagh Ata Mountain, suggesting that the upward BC emissions had important impacts on this remote site located on the northern Tibetan Plateau. Thus, there is a need to quantitatively estimate the effect of surrounding emissions on the BC concentrations on the northern Tibetan Plateau. In this study, a sensitivity study with four individual BC emission regions (Central Asia, Europe, the Persian Gulf, and South Asia) was conducted by using the MOZART-4 model. The result suggests that during the “normal period” (non-Kuwait fires), the largest effect was due to the Central Asia source (44 %) during the Indian monsoon period, while during the non-monsoon period, the largest effect was due to the South Asia source (34 %). The increase in radiative forcing increase (RFI) due to the deposition of BC on snow was estimated by using the radiative transfer model (SNICAR). The results show that under the fresh snow assumption, the estimated increase in RFI ranged from 0.2 to 2.5 W m−2, while under the aged snow assumption, the estimated increase in RFI ranged from 0.9 to 5.7 W m−2. During the Kuwait fires period, the RFI values increased about 2–5 times higher than in the “normal period”, suggesting a significant increase for the snow melting on the northern Tibetan Plateau due to this fire event. This result suggests that the variability of BC deposition at Muztagh Ata Mountain provides useful information to study the effect of the upward BC emissions on environmental and climate issues in the northern Tibetan Plateau. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 3 ( 2019-02-12), p. 1881-1899
    Abstract: Abstract. Measurements at a background site near Beijing showed that pollution controls implemented during the 19th National Congress of the Communist Party of China (NCCPC) were effective in reducing PM2.5. Mass concentrations of PM2.5 and its major chemical components were 20.6 %–43.1 % lower during the NCCPC-control period compared with a non-control period, and differences were greater on days with stable meteorological conditions. A receptor model showed that PM2.5 from traffic-related emissions, biomass burning, industrial processes, and mineral dust was 38.5 %–77.8 % lower during the NCCPC-control versus non-control period, but differences in PM2.5 from coal burning were small, and secondary sources were higher during the NCCPC-control period. During one pollution episode in the non-control period, secondary sources dominated, and the WRF-Chem model showed that the Beijing–Tianjin–Hebei (BTH) region contributed 73.6 % of PM2.5 mass. A second pollution episode was linked to biomass burning, and BTH contributed 46.9 % of PM2.5 mass. Calculations based on Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithms showed that organic matter was the largest contributor to light extinction during the non-control period whereas NH4NO3 was the main contributor during the NCCPC. The Tropospheric Ultraviolet and Visible radiation model showed that the average direct radiative forcing (DRF) values at the Earth's surface were −14.0 and −19.3 W m−2 during the NCCPC-control and non-control periods, respectively, and the DRF for the individual PM2.5 components were 22.7 %–46.7 % lower during the NCCPC. The information and dataset from this study will be useful for developing air pollution control strategies in the BTH region and for understanding associated aerosol radiative effects.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 4 ( 2019-02-22), p. 2343-2359
    Abstract: Abstract. Organic aerosol (OA) concentrations are simulated over the Beijing–Tianjin–Hebei (BTH) region from 9 to 26 January 2014 using the Weather Research and Forecasting model coupled with chemistry (WRF-CHEM), with the goal of examining the impact of heterogeneous HONO sources on SOA formation and SOA formation from different pathways during wintertime haze days. The model generally shows good performance with respect to simulating air pollutants and organic aerosols against measurements in BTH. Model results show that heterogeneous HONO sources substantially enhance near-surface SOA formation, increasing the regional average near-surface SOA concentration by about 46.3 % during the episode. Oxidation and partitioning of primary organic aerosols treated as semi-volatile dominate SOA formation, contributing 58.9 % of the near-surface SOA mass in BTH. Irreversible uptake of glyoxal and methylglyoxal on aerosol surfaces constitutes the second most important SOA formation pathway during the episode, with the SOA contribution increasing from 8.5 % under non-haze conditions to 30.2 % under haze conditions. Additionally, direct emissions of glyoxal and methylglyoxal from residential sources contribute about 25.5 % of the total SOA mass on average in BTH. Our study highlights the importance of heterogeneous HONO sources and primary residential emissions of glyoxal and methylglyoxal to SOA formation over the BTH region in winter.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 21 ( 2019-10-30), p. 13341-13354
    Abstract: Abstract. Sulfate aerosols have profound impacts on the climate, ecosystem, visibility, and public health, but the sulfate formation pathway remains elusive. In the present study, a source-oriented WRF-Chem model is applied to simulate a persistent air pollution episode from 4 to 15 July 2015 in Beijing–Tianjin–Hebei (BTH), China, to study the contributions of four pathways to sulfate formation. When comparing simulations to measurements in BTH, the index of agreement (IOA) of meteorological parameters, air pollutants, and aerosol species generally exceeds 0.6. On average in BTH, the heterogeneous reaction of SO2 involving aerosol water and the SO2 oxidation by OH constitutes the two most important sulfate sources, with a contribution of about 35 %–38 % and 33 %–36 %, respectively. Primary sulfate emissions account for around 22 %–24 % of the total sulfate concentration. SO2 oxidation by stabilized Criegee intermediates (sCIs) also plays an appreciable role in sulfate formation, with a contribution of around 9 % when an upper limit of the reaction rate constant of sCIs with SO2 (κsCI+SO2=3.9×10-11 cm3 s−1) and a lower limit of the reaction rate constant of sCIs with H2O (κsCI+H2O=1.97×10-18 cm3 s−1) are used. Sensitivity studies reveal that there are still large uncertainties in the sulfate contribution of SO2 oxidation by sCIs. The sulfate contribution of the reaction is decreased to less than 3 % when κSCI+SO2 is decreased to 6.0×10-13 cm3 s−1. Furthermore, when κsCI+H2O is increased to 2.38×10-15 cm3 s−1 based on the reported ratio of κSCI+H2O to κSCI+SO2 (6.1×10-5), the sulfate contribution becomes insignificant at less than 2 %. Further studies need to be conducted to better determine κsCI+SO2 and κsCI+H2O to evaluate the effects of sCI chemistry on sulfate formation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 3 ( 2021-02-15), p. 2229-2249
    Abstract: Abstract. Accurate identification and quantitative source apportionment of fine particulate matter (PM2.5) provide an important prerequisite for design and implementation of emission control strategies to reduce PM pollution. Therefore, a source-oriented version of the WRF-Chem model is developed in the study to conduct source apportionment of PM2.5 in the North China Plain (NCP). A persistent and heavy haze event that occurred in the NCP from 5 December 2015 to 4 January 2016 is simulated using the model as a case study to quantify PM2.5 contributions of local emissions and regional transport. Results show that local and nonlocal emissions contribute 36.3 % and 63.7 % of the PM2.5 mass in Beijing during the haze event on average. When Beijing's air quality is excellent or good in terms of hourly PM2.5 concentrations, local emissions dominate the PM2.5 mass, with contributions exceeding 50 %. However, when the air quality is severely polluted, the PM2.5 contribution of nonlocal emissions is around 75 %. Nonlocal emissions also dominate Tianjin's air quality, with average PM2.5 contributions exceeding 65 %. The PM2.5 level in Hebei and Shandong is generally controlled by local emissions, but in Henan, local and nonlocal emissions play an almost equivalent role in the PM2.5 level, except when the air quality is severely polluted, with nonlocal PM2.5 contributions of over 60 %. Additionally, the primary aerosol species are generally dominated by local emissions, with the average contribution exceeding 50 %. However, the source apportionment of secondary aerosols shows more evident regional characteristics. Therefore, except for cooperation with neighboring provinces to carry out strict emission mitigation measures, reducing primary aerosols is a priority to alleviate PM pollution in the NCP, especially in Beijing and Tianjin.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 15 ( 2016-08-09), p. 10045-10061
    Abstract: Abstract. The organic aerosol (OA) concentration is simulated in the Guanzhong Basin, China from 23 to 25 April 2013 utilizing the WRF-CHEM model. Two approaches are used to predict OA concentrations: (1) a traditional secondary organic aerosol (SOA) module; (2) a non-traditional SOA module including the volatility basis-set modeling method in which primary organic aerosol (POA) is assumed to be semivolatile and photochemically reactive. Generally, the spatial patterns and temporal variations of the calculated hourly near-surface ozone and fine particle matters agree well with the observations in Xi'an and surrounding areas. The model also yields reasonable distributions of daily PM2.5 and elemental carbon (EC) compared to the filter measurements at 29 sites in the basin. Filter-measured organic carbon (OC) and EC are used to evaluate OA, POA, and SOA using the OC ∕ EC ratio approach. Compared with the traditional SOA module, the non-traditional module significantly improves SOA simulations and explains about 88 % of the observed SOA concentration. Oxidation and partitioning of POA treated as semivolatile constitute the most important pathway for the SOA formation, contributing more than 75 % of the SOA concentrations in the basin. Residential emissions are the dominant anthropogenic OA source, constituting about 50 % of OA concentrations in urban and rural areas and 30 % in the background area. The OA contribution from transportation emissions decreases from 25 % in urban areas to 20 % in the background area, and the industry emission OA contribution is less than 6 %.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 12 ( 2022-06-29), p. 8369-8384
    Abstract: Abstract. Due to the complexity of emission sources, a better understanding of aerosol optical properties is required to mitigate climate change in China. Here, an intensive real-time measurement campaign was conducted in an urban area of China before and during the COVID-19 lockdown in order to explore the impacts of anthropogenic activities on aerosol light extinction and the direct radiative effect (DRE). The mean light extinction coefficient (bext) decreased from 774.7 ± 298.1 Mm−1 during the normal period to 544.3 ± 179.4 Mm−1 during the lockdown period. A generalised additive model analysis indicated that the large decline in bext (29.7 %) was due to sharp reductions in anthropogenic emissions. Chemical calculation of bext based on a ridge regression analysis showed that organic aerosol (OA) was the largest contributor to bext in both periods (45.1 %–61.4 %), and the contributions of two oxygenated OAs to bext increased by 3.0 %–14.6 % during the lockdown. A hybrid environmental receptor model combined with chemical and optical variables identified six sources of bext. It was found that bext from traffic-related emissions, coal combustion, fugitive dust, the nitrate and secondary OA (SOA) source, and the sulfate and SOA source decreased by 21.4 %–97.9 % in the lockdown, whereas bext from biomass burning increased by 27.1 %, mainly driven by the undiminished need for residential cooking and heating. An atmospheric radiative transfer model was further used to illustrate that biomass burning, rather than traffic-related emissions, became the largest positive effect (10.0 ± 10.9 W m−2) on aerosol DRE in the atmosphere during the lockdown. Our study provides insights into aerosol bext and DRE from anthropogenic sources, and the results imply the importance of controlling biomass burning for tackling climate change in China in the future.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 4 ( 2017-02-23), p. 2759-2774
    Abstract: Abstract. Rapid growth of industrialization, transportation, and urbanization has caused increasing emissions of ozone (O3) precursors recently, enhancing the O3 formation in eastern China. We show here that eastern China has experienced widespread and persistent O3 pollution from April to September 2015 based on the O3 observations in 223 cities. The observed maximum 1 h O3 concentrations exceed 200 µg m−3 in almost all the cities, 400 µg m−3 in more than 25 % of the cities, and even 800 µg m−3 in six cities in eastern China. The average daily maximum 1 h O3 concentrations are more than 160 µg m−3 in 45 % of the cities, and the 1 h O3 concentrations of 200 µg m−3 have been exceeded on over 10 % of days from April to September in 129 cities. Analyses of pollutant observations from 2013 to 2015 have shown that the concentrations of CO, SO2, NO2, and PM2.5 from April to September in eastern China have considerably decreased, but the O3 concentrations have increased by 9.9 %. A widespread and severe O3 pollution episode from 22 to 28 May 2015 in eastern China has been simulated using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM) to evaluate the O3 contribution of biogenic and various anthropogenic sources. The model generally performs reasonably well in simulating the temporal variations and spatial distributions of near-surface O3 concentrations. Using the factor separation approach, sensitivity studies have indicated that the industry source plays the most important role in the O3 formation and constitutes the culprit of the severe O3 pollution in eastern China. The transportation source contributes considerably to the O3 formation, and the O3 contribution of the residential source is not significant generally. The biogenic source provides a background O3 source, and also plays an important role in the south of eastern China. Further model studies are needed to comprehensively investigate O3 formation for supporting the design and implementation of O3 control strategies, considering rapid changes of emission inventories and photolysis caused by the Atmospheric Pollution Prevention and Control Action Plan released by the Chinese State Council in 2013.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...