GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liu, Qing-yu  (1)
  • Comparative Studies. Non-European Languages/Literatures  (1)
Material
Person/Organisation
Language
Years
FID
Subjects(RVK)
  • Comparative Studies. Non-European Languages/Literatures  (1)
RVK
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2019
    In:  The Journal of the Acoustical Society of America Vol. 146, No. 4 ( 2019-10-01), p. 2482-2491
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 146, No. 4 ( 2019-10-01), p. 2482-2491
    Abstract: Many underwater acoustic (UWA) channels exhibit impulsive noise, thereby severely degrading the performance of traditional channel estimation algorithms. This paper presents two channel estimation algorithms for impulsive noise, namely (i) the variable forgetting factor l1,0 recursive least sign algorithm (VFF-l1,0-RLSA) and (ii) the variable forgetting factor l2,0 recursive least sign algorithm (VFF-l2,0-RLSA), both of which exploit the group sparse multipath structure and maintain robustness under impulsive noise. By using the l1 norm of the estimation error as part of the cost function, RLSAs are better at detecting and rejecting impulsive noise than the recursive least squares algorithms. A mixed l1,0 or l2,0 norm is incorporated with a RLSA to achieve better performance in group sparse UWA channel estimation. The time-varying forgetting factor and regularization parameter in the two proposed algorithms help to improve their performance. Simulation results based on Arctic ice cracking noise demonstrate the robustness and superiority of the two proposed algorithms.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2019
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...