GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liu, Jun  (8)
  • Zhou, Rui  (8)
  • Medicine  (8)
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  The Journal of Infectious Diseases Vol. 201, No. 1 ( 2010-01), p. 160-169
    In: The Journal of Infectious Diseases, Oxford University Press (OUP), Vol. 201, No. 1 ( 2010-01), p. 160-169
    Type of Medium: Online Resource
    ISSN: 0022-1899 , 1537-6613
    URL: Issue
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 1473843-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2012
    In:  The Journal of Immunology Vol. 188, No. 3 ( 2012-02-01), p. 1266-1274
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 188, No. 3 ( 2012-02-01), p. 1266-1274
    Abstract: Aberrant cellular responses to proinflammatory cytokines, such as TNF-α, are pathogenic features in most chronic inflammatory diseases. A variety of extracellular and intracellular feedback pathways has evolved to prevent an inappropriate cellular reaction to these proinflammatory cytokines. In this study, we report that TNF-α treatment of human and mouse cholangiocytes and hepatocytes downregulated expression of p300/CBP-associated factor (PCAF), a coactivator and an acetyltransferase that promotes histone acetylation and gene transcription. Of these upregulated microRNAs in TNF-α–treated cells, miR-181a/b (miR-181a and miR-181b) suppressed translation of PCAF mRNA. Functional manipulation of miR-181a/b caused reciprocal alterations in PCAF protein expression in cultured cholangiocytes and hepatocytes. Inhibition of miR-181a/b function with anti-miRs blocked TNF-α–induced suppression of PCAF expression. Promoter recruitment of PCAF was shown to be associated with TNF-α–induced transcription of inflammatory genes. Intriguingly, pretreatment of cells with TNF-α inhibited transcription of inflammatory genes in response to subsequent TNF-α stimulation. Overexpression of PCAF or inhibition of miR-181a/b function with anti-miRs attenuated the inhibitory effects of TNF-α pretreatment on epithelial inflammatory response to subsequent TNF-α stimulation. Downregulation of PCAF and the inhibitory effects of TNF-α pretreatment on liver epithelial inflammatory response were further confirmed in a mouse model of TNF-α i.p. injection. These data suggest that PCAF is a target for miR-181a/b, and downregulation of PCAF by TNF-α provides negative feedback regulation to inflammatory reactions in liver epithelial cells, a process that may be relevant to the epigenetic fine-tuning of epithelial inflammatory processes in general.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2012
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3621-3621
    Abstract: Abstract 3621 Increasing evidence suggests that dysregulation of miRNAs plays an important pathological role in various malignant diseases including acute leukemia. To reveal the contributions of aberrant epigenetic modifications to the deregulated miRNA expression in precursor B-cell acute lymphoblastic leukemia, we examined the miRNA expression profile in NALM-6 cells after treatment with the combination of 5-AZA-2'-deoxycytidine (AZA) and trichostatin A (TSA). We found that the treatment significantly increased expression of 34 miRNAs and decreased the expression of 10 miRNAs. One of the most significantly upregulated miRNAs is miR-218, an intronic miRNA that can be transcribed from either pri-miR-218-1 or pri-miR-218-2, residing in the intron of the SLIT2 gene or SLIT3 gene respectively. Interestingly, we detected that pri-miR-218-1 and its host gene SLIT2, but not pri-miR-218-2 and SLIT3, were induced by AZA plus TSA treatment. Consistent with this observation, we showed that the CpG islands in SLIT2 promoter was highly methylated in NALM-6 cells and AZA plus TSA treatment significantly decreased DNA methylaiton in this region. We found that targeting of the 3'untranslated region of CDK6, a bona fide oncogenic factor, by miR-218 resulting in translational repression. Overexpression of miR-218 expression in NALM-6 cells by transfection of miR-218 precursor decreased cellular expression of CDK6 at the protein level, but not at the message level. AZA and TSA treatment decreased CDK6 expression in NALM-6 cells, presumably through upregulating miR-218. Our results indicate that epigenetic regulation plays an important role in controlling miRNA expression in human acute lymphoblastic leukemia cells. Epigenetic silencing of miR-218 may contribute to the overexpression of CDK6 in NALM-6 cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 3464-3464
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 3464-3464
    Abstract: Abstract 3464 Poster Board III-352 MicroRNA-22 is one of the miRNAs frequently downregulated in human ALL cells and may play an important anti-tumor role in normal hematopoiesis. Histone modification and DNA methylation can have different roles in gene silencing in cancer. To investigate whether histone modifications would contribute to the dysregulation of miRNA-22 in acute lymphoblastic leukemia (ALL), the effect of a histone deacetylase inhibitor, trichostatin A (TSA), on miRNA-22 expression of primary ALL cells was analyzed by real-time PCR. The total number of patients included to this study is 33, including 26 samples of leukemia (18 of ALL and 8 of acute myeloid leukemia) and 7 normal controls. All patient blood samples were collected at the time of diagnosis. We detected a lower expression of pri-miR-22 in PMBCs from ALL patients compared with that from the health volunteers. Treatment with TSA significantly increased pri-miR-22 expression in PMBCs from ALL patients, but not in cells from the health volunteers. Whereas PMBCs from ALL patients and AML patients showed comparable levels of pri-miR-22. TSA treatment had no effect on pri-miR-22 expression in PMBCs from AML patients, suggesting TSA-mediated upregulation of miR-22 transcription in ALL but not AML malignant cells. Moreover, we used MPS assay to analyze the methylation status at the promoter element of miR-22 gene in primary human specimens. No DNA hypermethylation was detected in PMBCs from the health volunteers and patients with either ALL or AML. These data provide further evidence that miR-22 silencing in ALL cells may be DNA methylation-independent. In contrast, accumulation of the repressive histone marker H3K27 trimethylation (H3K27triM) was indentified around the transcriptional start point of the gene, which reduced by TSA treatment. In conclusion, we showed that histone modification is involved in miRNA dysregulation in human ALL cells. Specifically, the silencing of miR-22 in ALL cells is associated with the accumulation of histone modification in its promoter element of miR-22 gene but independent of DNA methylation. The accumulation of H3K27triM may be a novel epigenetic mechanism for miR-22 silencing in ALL. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 2242-2242
    Abstract: The regulation of human microRNA (miRNA) expression is still poorly understood and aberrant epigenetic regulation has recently been implicated in the down-regulation of tumor suppressor miRNAs. In this study, we investigated whether histone modifications would contribute to the dysregulation of miRNAs in lymphoblastic leukemia cells. Using a precursor B-cell acute lymphoblastic leukemia cell line, NALM-6 cells, we demonstrated by miRNA microarray analysis that a specific histone deacetylases inhibitor, trichostatin A (TSA), induced a differential alteration in cellular miRNA expression. A total of 10 miRNAs were down-regulated and 31 up-regulated significantly following TSA treatment. Among TSA-up-regulated miRNAs, miR-22 is an extronic miRNA and resides in the second exon of the non-coding transcript MGC14376. Up-regulation of both miR-22 and MGC14376 was found in NALM-6 cells treated with TSA but not 5-AZA-2’-deoxycytidine, a DNA demethylating agent. Luciferase reporter analysis identified three regions in the promoter of miR-22 and MGC14376 that differentially regulated its transcriptional activation. Although there is a CpG island within the promoter of miR-22 and MGC14376, no obvious methylation was detected at this region in NALM-6 cells. Conversely, H3K27 trimethylation (H3K27triM)-associated histone modification was identified in the first intron of MGC14376 gene and was involved in TSA-induced miR-22 expression. Thus, miR-22 silencing in NALM-6 cells involves H3K27triM-associated histone modification but is independent of DNA methylation, suggesting that methylation-independent H3K27triM histone modification may be an important mechanism for miRNA dysregulation in cancer cells.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: British Journal of Haematology, Wiley, Vol. 148, No. 1 ( 2010-01), p. 69-79
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2010
    In:  The Journal of Infectious Diseases Vol. 202, No. 1 ( 2010-07), p. 125-135
    In: The Journal of Infectious Diseases, Oxford University Press (OUP), Vol. 202, No. 1 ( 2010-07), p. 125-135
    Type of Medium: Online Resource
    ISSN: 0022-1899 , 1537-6613
    URL: Issue
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 1473843-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2009
    In:  The Journal of Immunology Vol. 183, No. 3 ( 2009-08-01), p. 1617-1624
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 183, No. 3 ( 2009-08-01), p. 1617-1624
    Abstract: Posttranscriptional gene regulation by microRNAs (miRNAs) has been implicated in the fine-tuning of TLR-mediated inflammatory response. The cytokine-inducible Src homology 2-containing protein (CIS), one member of the suppressors of cytokine signaling family of proteins, is an important negative regulator for inflammatory cytokine signaling. Using in vitro models using normal human biliary epithelial cells (cholangiocytes), we demonstrated that LPS stimulation or infection with the parasitic protozoan Cryptosporidium parvum induced expression of CIS protein without a change in CIS mRNA levels by activating the TLR signaling pathway. Of those miRNAs expressed in cholangiocytes, we found that targeting of the 3′-untranslated region of CIS by microRNA-98 (miR-98) or let-7 resulted in translational repression, but not CIS mRNA degradation. LPS stimulation or C. parvum infection decreased cholangiocyte expression of miR-98 and let-7. Down-regulation of miR-98 and let-7 relieved miRNA-mediated translational suppression of CIS and contributed to LPS- and C. parvum-stimulated CIS protein expression. Moreover, gain-of-function (by overexpression of CIS) and loss-of-function (by siRNA interference) studies revealed that CIS could enhance IκBα degradation and regulate NF-κB activation in cholangiocytes in response to LPS stimulation or C. parvum infection. Our data suggest that miR-98 and let-7 confer cholangiocyte expression of CIS in response to microbial challenge, a process that may be relevant to the regulation of TLR-mediated epithelial innate immune response.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...