GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 4371-4371
    Abstract: Syndecan-1 (SDC1), also known as CD138, is a member of integral membrane heparin sulfate proteoglycans constantly expressed in plasma cells (PCs) and a primary diagnostic marker for human multiple myeloma (MM). We here further define new functions of SDC1 in the MM pathobiology. Firstly, flow cytometry and qRT-PCR analysis showed that SDC1 is expressed at relatively higher levels in AMO-1, U266, OPM2, H929, MM1S, and MM1R MM cells when compared with JJN3, RPMI 8226, and ANBL6 MM cells. SDC1 levels are comparable in paired MM cell lines sensitive or resistant to current anti-MM therapies including lenalidomide, pomalidomide, and bortezomib. Significantly increased SDC1 mRNA levels in advanced MM stages (p 〈 0.05) were further correlated with elevated soluble SDC1 protein levels in patient serum by ELISA. As expected, higher soluble SDC1 was also detected in culture media (CM) from MM cell lines with higher mRNA levels. Next, the effects of SDC1 were studied by SDC1 knockout (KO) in OPM2, JJN3 and H929 cells via CRISPR/Ca9 gene modification, followed by RNA-Seq analysis. Neglectable shed SDC1 in CM of all SDC1 KO MM cells confirm null SDC1 expression. Expression of anti-apoptosis gene BCL2L1, cell cycle genes (CCND1, CCND2), and transcription factor RELA gene were decreased in SDC1 KO vs control MM cells. Permanent SDC1 KO cells were eventually derived, indicating additional SDC1 function besides its role in MM cell growth and survival. KEGG pathway analysis associated with genes downregulated following SDC1 KO showed biological processes (BPs) enrichment in ECM-receptor interaction (hsa04512; p 〈 0.001), cell adhesion molecules (hsa04514; p 〈 0.001), focal adhesion (hsa04510; p 〈 0.001), cytokine-cytokine receptor interaction (hsa04060; p=0.005), chemokine signaling pathway ( hsa04062; p=0.006), gap junction (hsa04540; p=0.002), axon guidance (hsa04360; p=0.016), JAK-STAT signaling pathway (hsa04630; p=0.026), lysosome (hsa04142; p=0.047).Specifically, IL-21R, related to JAK-STAT signaling pathway and cytokine-cytokine receptor interaction, was significantly decreased in SDC1 KO MM cells, as validated by qRT-PCR and human receptor array analysis. IL-21R contains the common cytokine-receptor gamma-chain shared by the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, indicating potential cross-talks between MM cells and surrounding immune cells via SDC1. Since its natural ligand IL-21 is mainly secreted by non-myeloma bone marrow (BM) accessory cells, SDC1 could also modulate interactions between myeloid lineages and MM cells via IL-21/IL-21R circuit in the BM microenvironment. Of note, other key MM antigens, i.e., CD38, BCMA, SLAMF7 were affected at mRNA levels in SDC1 KO vs control MM cells. Moreover, human receptor array data showed decreased expression in Flt-3L, DR6, Endoglin, GITR, HVEM, IL-2RG, IL-17RA, IL-21R, PECAM-1, PDGFRB, RAGE, Trappin-2 and µPAR in SDC1 KO MM cells. BPs through GO analysis in these downregulated receptors were cell activation (GO:0001775), cell surface receptor signaling pathway (GO:0007166), and immune system process (GO:0002370). KEGG analysis showed that those receptors molecular were enriched in cytokine-cytokine receptor interaction pathway (KEGG:04060).Consistent with RNA seq data, µPAR, an important factor of ARF6-dependent trafficking, was also found significantly downregulated in SDC1 KO MM cells. Since ARF6 activation regulates macropinocytosis, an essential metabolic pathway fueling Ras-driven cancer cells, these data suggest that SDC1 may involve in ARF6-dependent macropinocytosis in MM cells. ARF6 is induced by KRAS mutation, we thus checked macropinocytic index in KRAS-mutated MM cell lines. Increased macropinocytosis occur in KRAS-mutated MM cells (KMS28-BM, MM1S, MM1R) compared with KRAS WT OPM2 and KMS12-BM. Importantly, macropinocytosis was inhibited following SDC1 depletion in KRAS-mutated MM cells, indicating that SDC1 critically mediates KRAS-driven macropinocytosis in MM cells. These data highlight the requirements for SDC1 to mediate nutrient-scavenging macropinocytosis in MM cells, most prominently harboring KRAS-mutation. Taken together, our results identify new functions of SDC1 which are crucial to enhance myeloma cell fitness and adaptation to various conditions in the BM milieu, thereby further supporting SDC1 targeted immunotherapy in MM. Disclosures Munshi: Celgene: Consultancy; Amgen: Consultancy; Adaptive: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Oncopep: Consultancy; Abbvie: Consultancy; Abbvie: Consultancy; Amgen: Consultancy; Adaptive: Consultancy. Anderson:Celgene: Consultancy, Speakers Bureau; Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 5617-5617
    Abstract: CD138 (Syndecan-1), a member of integral membrane family of heparan sulfate proteoglycans (HSPGS), is highly expressed on differentiated plasma cells (PC) and is both a primary diagnostic biomarker of multiple myeloma (MM) as well as an indicator of poor clinical prognosis. This surface antigen is an attractive candidate for targeted immunotherapy for MM, given its constitutive expression during disease progression, including smoldering myeloma, a relatively early asymptomatic phase of disease that is potentially amenable to early treatment. We here investigated the targeted use of chimeric anti-CD138 monoclonal antibody (mAb) 1610 and confirm its in vitro anti-tumor potency based on an immune directed cellular cytotoxicity against a diverse panel of CD138 positive MM cell lines, both resistant or sensitive to conventional and current MM therapies and varying levels of CD138 expression as measured by cell immunostaining and quantitative RT-PCR. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated using a calcein-AM based release assay in the presence of human natural killer (NK) effector cells purified from four different healthy donors. MAb 1610 lysed CD138-expressing MM cell lines in a dose dependent manner. This ADCC activity was mAb 1610 specific (in comparison to isotype control), CD138 target dependent, and mediated in the presence of human NK effector cells (co-cultured at an effector:target cell ratio of 20:1). MAb 1610 dependent-cytotoxicity was observed at concentrations as low as 0.01 µg/ml with maximal lysis occurring at approximately 1 µg/ml and extrapolated sub-nanomolar ED50 potencies (Table 1) based on these data. All MM cell lines were subject to mAb 1610-mediated lysis, albeit with slightly different sensitivities that modestly correlated with their relative CD138 cell surface expression levels. This anti CD138 mAb-dependent cellular toxicity included MM1SR and H929R cell lines, both of which are resistant to lenalidomide. MAb 1610 induced specific cell lysis of JJN3 cells, but not of CD138 knock out JJN3 cells or CD138-negative B lymphocytes, further confirming that mAb 1610 specifically induced ADCC against-CD138 expressing MM cells in a target specific manner. Using an orthogonal cytometric based assay, the ability of mAb 1610, in a dose-dependent manner, to activate NK cells was also shown in the presence of CD138 target cells, as evidenced by increased expression of CD107 (a marker for NK cell degranulation) and cytokine production in NK cells. Importantly, the CD138 targeting cytotoxic activities of mAb 1610 translationally extend to MM cells autologously derived directly from MM patients with newly diagnosed and relapsed/refractory diseases. The concomitant use of autologously derived effector cells from these patients to mediate antibody dependent myeloma cell killing further suggests the relevance of anti-CD138 directed immune-based therapeutic strategy in humans. In further replication of human disease, we also co-cultured MM1.S or MM1.R cells with human bone marrow stromal cells (BMSCs) which support myeloma cell growth by promoting an immunosuppressive microenvironment within the BM. Importantly, mAb 1610-dependent cytotoxicity against MM1.S or MM1.R cells was not attenuated by the co-presence of BMSCs. Similarly, IL-6 (10 ng/ml) did not significantly affect mAb 1610-induced ADCC activity, indicating a mechanism of action that can overcome growth promotion, immune suppression, and drug resistance conferred by the tumor promoting BM microenvironment. Taken together, these in vitro studies further demonstrate as a proof-of-concept the use of an antibody CD138 targeting strategy mediated through an immune based mechanism of myeloma plasma cell killing. Based on these results, optimization and further biological characterization of chimeric mAb 1610 in advance of pre-clinical studies is anticipated. Disclosures Myette: Visterra Inc.: Employment. Chaganty:Visterra Inc.: Employment. Adari:Visterra Inc.: Employment. Tissire:Visterra Inc.: Employment. Deotale:Visterra Inc.: Employment. Shriver:Visterra Inc.: Employment. Munshi:OncoPep: Other: Board of director. Anderson:Millennium Takeda: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; OncoPep: Equity Ownership, Other: Scientific founder; C4 Therapeutics: Equity Ownership, Other: Scientific founder; Celgene: Consultancy; Bristol Myers Squibb: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Lymphoma Myeloma and Leukemia, Elsevier BV, Vol. 19, No. 10 ( 2019-10), p. e51-e52
    Type of Medium: Online Resource
    ISSN: 2152-2650
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2540998-0
    detail.hit.zdb_id: 2193618-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 8 ( 2020-08), p. 2150-2162
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Lymphoma Myeloma and Leukemia, Elsevier BV, Vol. 21 ( 2021-10), p. S13-S14
    Type of Medium: Online Resource
    ISSN: 2152-2650
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2540998-0
    detail.hit.zdb_id: 2193618-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 4381-4381
    Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like 3B (APOBEC3B, A3B) is one of 7-membered DNA cytosine deaminase family, causing cytosine-to-uracil (C-to-U) deamination in single-stranded DNA and promoting mutations in multiple human cancers including multiple myeloma (MM). High APOBEC3B expression is found in a significant portion of MM patients with MAF overexpression among t(14;16) and t(14;20). A3B upregulation is further associated with poor prognosis in MM, suggesting its role in the MM pathophysiology. However, approximately 23% MM patients with high APOBEC3 activity are associated with MAF/MAFA/MAFB translocations, the remainder of patients with high APOBEC3 carry neither translocations nor overexpression of these genes. Besides, studies are lacking on how A3B is regulated and the role of A3B in drug responses in MM. We here defined new mechanisms controlling A3B expression and further characterized its impact on treatment responses to current anti-MM therapies. Using qRT-PCR, A3B transcript is significantly higher than other members of the APOBEC3 gene family in MM cell lines (n=19) and MM patients, indicating that A3B may play a major role in MM. Using immunoblotting analysis, A3B protein expression was further confirmed in MM cell lines with various levels (n=10). Importantly, A3B mRNA upregulation by 1.34-42.64 folds was observed in CD138-purified cells from majorities of MM patients (83.3%) when compared to PBMC from the same individual (n=12). In MM cell lines without MAF/MAFA/MAFB translocation as a study model, higher A3B protein expression is associated with higher DNA damage levels as evidenced by higher γ-H2AX. These results suggest that A3B expression might be influenced by DNA damage levels in MM cells. Following a short time treatment of gamma-irradiation to cause DNA damages, A3B expression in viable MM cells was enhanced in a dose-dependent manner. We next treated MM cells (n=5) with common anti-MM drugs such as Melphalan (Mel) and Bortizomib (btz), both of which induce DNA damages, followed by examination of changes in A3B and γ-H2AX. Under sublethal treatment conditions of Mel or btz, A3B was consistently induced at both mRNA and protein levels in multiple MM cell lines regardless of the baseline A3B expression. Significantly, A3B was upregulated and associated with increased γ-H2AX in patient MM cells treated with Mel or btz under sub-lethal doses. Since DNA damages activate the ATR/ATM pathway, we next investigated whether these kinases mediate A3B induction following treatments with these compounds in MM cells. The presence of ATM or ATR inhibitors blocked A3B upregulated by these DNA damage-inducing treatments in MM cell lines (n=3), indicating an ATM/ATR-dependent pathway for A3B changes. Next, gene-specific CRISPR knock out (KO) and inducible-shRNA knockdown (KD) were used to determine the functional impact of perturbation of A3B in proliferation and survival of MM cells. Both KO and KD of A3B decreased growth and viability of MM cell lines regardless of sensitive or resistant to dexamethasone or lenalidomide. Using LIVE/DEAD fixable Aqua Stain and annexin V-based flow cytometric analysis, A3B inhibition enhanced growth arrest followed by apoptosis in MM cells. Significantly, A3B KD by its shRNA in RPMI8226 MM cells enhanced sensitivity to pomalidomide. Taken together, these data indicate that increased A3B level plays a critical role in MM cell survival and drug responses. DNA damages triggered by IR, Mel, or btz further enhance A3B expression via ATM/ATR pathway, which in turn increases subclonal diversity leading to drug resistance. The role of A3B in disease pathophysiology and progression, coupled with its function in mediating treatment response, suggest potential utility of targeting A3B in MM. Disclosures Munshi: Celgene: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Janssen: Consultancy; Takeda: Consultancy. Anderson:Sanofi-Aventis: Other: Advisory Board; Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 407-407
    Abstract: Constitutive genomic complexity, ongoing DNA damage, and accumulating mutations are observed with progression from monoclonal gammopathy of undetermined significance (MGUS) to active multiple myeloma (MM) to relapsed/refractory disease. Apolipoprotein B mRNA editing catalytic polypeptide-like 3B (APOBEC3B), a DNA cytosine deaminase, plays a prominent role in inducing mutations in multiple human cancers. In MM, APOBEC3B is linked to sub-clonal diversification, intra-tumor heterogeneity, and tumor evolution. Moreover, upregulation of APOBEC3B is associated with poor MM prognosis, suggesting that targeting MM cells with high APOBEC3B may represent a novel therapeutic approach. We here studied the upstream mechanisms of APOBEC3B dysregulation and further defined functional consequences of molecular manipulation of APOBEC3B in MM cells. We characterized its sequelae to identify novel strategies for cancer prevention or treatment by targeting this key driver gene of cancer mutagenesis. Since the expression of APOBEC3B is associated with replication stress in breast cancer, we first asked whether APOBEC3B levels are altered in MM cell lines upon treatments with Melphalan (Mel), an alkylating agent used to treat MM which is known to induce replication stress; or with ionizing radiation (IR). Using quantitative RT-PCR and Western blotting, we found that sub-lethal doses of Mel or IR induce APOBEC3B expression in a dose- and time-dependent manner in MM cell lines (n=7) associated with the phosphorylation of γH2AX. Interestingly bortezomib (btz), even at sub-lethal doses which triggers DNA damage signaling, also induced APOBEC3B expression in H929, MM1S, and U266 MM cells. Since DNA replication stress activates the ATR/ATM pathway, we next investigated whether these kinases mediate APOBEC3B induction following Mel- or IR- or btz-induced DNA replication stress. H929 and MM1S cells were treated with Mel or IR in the presence or absence of ATM or ATR inhibitors, and these cells were then lysed and assayed for APOBEC3B expression. Importantly, inhibition of ATR or ATM activation pathway significantly decreased Mel- or IR or btz-induced APOBEC3B, suggesting that replication stress induced by Mel, IR, or btz, activates transcription of APOBEC3B via an ATM/ATR dependent pathway in vitro. To test the effect of APOBEC3B on cell growth and survival, we used gene-specific CRISPR knock out (KO), shRNA knockdown (KD), and inducible-shRNA KD to study the functional impact of perturbation of APOBEC3B in MM cells. Both KO and KD of APOBEC3B decreased growth and survival in multiple MM cell lines sensitive or resistant to dexamethasone or lenalidomide. Using zombie aqua and annexin V-based flow cytometric analysis, we showed that APOBEC3B inhibition enhanced growth arrest, followed by apoptosis, in these MM cells. These data suggest an important role of increased APOBEC3B levels in MM cell survival. We next analyzed available data sources for MM cell lines from Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer (GDSC), which include microarray gene expression and drug sensitivity information. APOBEC3B expression negatively correlates with MM cell sensitivity to JQ1, a BET inhibitor which has been reported to inhibit MM cell growth and survival in vitro and in vivo. Importantly, in MM cell lines which are relatively resistant to pomalidomide and JQ1 than other cell lines, APOBEC3B KD by its shRNA enhances sensitivity to both drugs. Taken together, our findings provide new insights into the role of APOBEC3B in triggering cytidine deaminase-induced mutagenesis associated with progression of disease. Furthermore, we show that DNA replication stress triggered by Mel, IR, or btz upregulates APOBEC3B expression, which in turn confers drug resistance. The role of APOBEC in disease pathogenesis and progression, coupled with its role mediating drug resistance, suggest potential utility of targeting APOBEC in novel MM therapies. Disclosures Munshi: OncoPep: Other: Board of director. Anderson:Bristol Myers Squibb: Consultancy; Millennium Takeda: Consultancy; Celgene: Consultancy; C4 Therapeutics: Equity Ownership, Other: Scientific founder; OncoPep: Equity Ownership, Other: Scientific founder; Gilead: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 383-383
    Abstract: Constitutive genomic complexity, ongoing DNA damage, and accumulating mutations are observed with progression from monoclonal gammopathy of undetermined significance (MGUS) to active multiple myeloma (MM) to relapsed/refractory disease. Apolipoprotein B mRNA editing catalytic polypeptide-like 3B (APOBEC3B), a DNA cytosine deaminase in cancer mutagenesis, is recently linked to sub-clonal diversification, intra-tumor heterogeneity, and tumor evolution in MM. We here studied the upstream mechanisms of APOBEC3B dysregulation and further defined functional consequences of molecular manipulation of APOBEC3B in MM cells. We first asked whether APOBEC3B levels are altered in MM cells upon treatments with Melphalan (Mel), an alkylating agent used to treat MM which is known to induce replication stress, or with ionizing radiation (IR). Sub-lethal doses of Mel or IR induce APOBEC3B transcript and protein expression in a dose- and time-dependent manner in MM cell lines (n=7), associated with phosphorylation of γH2AX. Significantly, Bortezomib (btz), even at sub-lethal doses triggering DNA damage signaling, induced APOBEC3B expression in multiple MM cell lines. Next, inhibition of ATR or ATM activation pathway significantly decreased Mel- or IR or btz-induced APOBEC3B, suggesting that replication stress induced by Mel, IR, or btz activates ATM/ATR-dependent APOBEC3B induction. We used gene-specific CRISPR knock out (KO), shRNA knockdown (KD), and inducible-shRNA KD to study the functional impact of perturbation of APOBEC3B in MM cells. Both KO and KD of APOBEC3B decreased growth and survival in multiple MM cell lines sensitive or resistant to dexamethasone or lenalidomide. APOBEC3B inhibition significantly enhanced growth arrest followed by apoptosis in MM cells, suggesting that increased APOBEC3B levels contribute to MM cell survival. We next analyzed available data sources for MM cell lines from Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer, which include microarray gene expression and drug sensitivity information. APOBEC3B expression negatively correlates with MM cell sensitivity to JQ1, a BET inhibitor which inhibit MM cell growth and survival in vitroand in vivo. Importantly, in MM cell lines which are relatively resistant to pomalidomide and JQ1 than other cell lines, APOBEC3B KD by its shRNA enhances sensitivity to both drugs. Taken together, our findings provide new insights into the role of APOBEC3B in triggering cytidine deaminase-induced mutagenesis associated with progression of disease. Furthermore, DNA replication stress triggered by Mel, IR, or btz upregulates APOBEC3B expression, which in turn confers drug resistance. The role of APOBEC in disease pathogenesis and progression, coupled with its role mediating drug resistance, suggest potential utility of targeting APOBEC3B in novel MM therapies. Citation Format: Lijie Xing, Jiye Liu, Liang Lin, Shih-Feng Cho, Kenneth Wen, Tengteng Yu, Gang An, Ligui Qiu, Kenneth Anderson, Yu-Tzu Tai. APOBEC3B is induced by activation of DNA repair pathway and modulates the survival and treatment response in human multiple myeloma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 383.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 19 ( 2021-10-01), p. 5376-5388
    Abstract: Efforts are required to improve the potency and durability of CD38- and BCMA-based immunotherapies in human multiple myeloma. We here delineated the molecular and cellular mechanisms underlying novel immunomodulatory effects triggered by BCMA pyrrolobenzodiazepine (PBD) antibody drug conjugate (ADC) MEDI2228 which can augment efficacy of these immunotherapies. Experimental Design: MEDI2228-induced transcriptional and protein changes were investigated to define significantly impacted genes and signaling cascades in multiple myeloma cells. Mechanisms whereby MEDI2228 combination therapies can enhance cytotoxicity or overcome drug resistance in multiple myeloma cell lines and patient multiple myeloma cells were defined using in vitro models of tumor in the bone marrow (BM) microenvironment, as well as in human natural killer (NK)-reconstituted NOD/SCID gamma (NSG) mice bearing MM1S tumors. Results: MEDI2228 enriched IFN I signaling and enhanced expression of IFN-stimulated genes in multiple myeloma cell lines following the induction of DNA damage–ATM/ATR-CHK1/2 pathways. It activated cGAS-STING-TBK1-IRF3 and STAT1-IRF1–signaling cascades and increased CD38 expression in multiple myeloma cells but did not increase CD38 expression in BCMA-negative NK effector cells. It overcame CD38 downregulation on multiple myeloma cells triggered by IL6 and patient BM stromal cell-culture supernatant via activation of STAT1-IRF1, even in immunomodulatory drug (IMiD)- and bortezomib-resistant multiple myeloma cells. In vitro and in vivo upregulation of NKG2D ligands and CD38 in MEDI2228-treated multiple myeloma cells was further associated with synergistic daratumumab (Dara) CD38 MoAb-triggered NK-mediated cytotoxicity of both cell lines and autologous drug-resistant patient multiple myeloma cells. Conclusions: These results provide the basis for clinical evaluation of combination MEDI2228 with Dara to further improve patient outcome in multiple myeloma.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3176-3176
    Abstract: 14-3-3 proteins are chaperone and scaffold proteins that exert a widespread influence on cellular processes through binding to serine/threonine-phosphorylated residues on target proteins, forcing conformational changes or influencing their interactions with other molecules. Altered 14-3-3 expression is associated with development and progression of cancer. We therefore evaluated the status of all 14-3-3 isoforms in plasma cells disorders in publically available gene expression profiling (GEP) data. Using independent patient datasets, we observed a consistent higher expression of YWHAE (coding gene for the isoform 14-3-3ε) in MM and plasma cell leukemia (PCL) patients, while no consistent differences were observed with the other isoforms. Moreover, we also confirmed higher expression of YWHAE in our RNA-seq data from 420 newly-diagnosed MM patients, with relatively low expression in normal plasma cells. Finally, 14-3-3ε was also found to be constitutively expressed at protein level in primary patient MM cells and in a large panel of MM cell lines, with significantly lower expression in healthy donor B cells. To evaluate if 14-3-3ε represents a functional dependency in MM, we performed genetic perturbation of YWHAE in a panel of MM cell lines. Depletion of YWHAE using 3 different shRNA inhibited cell proliferation and induced cell apoptosis across 5 different cell lines, independently of their genetic background. We next performed CRISPR-Cas9-mediated YWHAE knock out (KO) in H929 and JJN3 cells and observed a significant decrease in cell viability and a robust apoptotic response. H929 YWHAE KO cells infected with FLAG-YWHAE addback lentiviral construct completely rescued this phenotype, confirming that loss of YWHAE is responsible for the defective cell viability and apoptotic phenotype. These observations were corroborated by ectopic overexpression of YWHAE in H929 WT cells that significantly promoted MM cell viability. To elucidate the underlying molecular mechanisms, proteins immunocomplexed co-precipitated with FLAG in H929 KO cells with 14-3-3ε-FLAG addback were analyzed by mass spectrometry. Protein analysis revealed interaction of 14-3-3ε with a large number of proteins, enriched in mTORC1, PI3K-AKT-mTOR and unfolded protein response (UPR) pathway-related genes. Among these, TSC2 and mTORC1 proteins were further studied. WB analysis confirmed interaction of 14-3-3ε with p-mTOR (S2448) and its upstream negative regulator p-TSC2 (S939), while mTORC1 downstream targets, p-p70 S6k and p-4E-BP1, did not interact with 14-3-3ε. WB analysis also revealed activation of TSC2 and consequent inhibition of mTORC1 (via decrease of p-mTOR S2448 levels) in YWHAE KD cells. YWHAE-FLAG addback reversed these effects. Additionally, GEP data in KD cells confirmed a significant impact on mTORC1 pathways. Importantly, YWHAE expression highly correlated (R 〉 0.8) with genes involved in the mTORC1 pathway, including PSMC4, COPS5, EIF2S2, in our RNA-seq dataset, demonstrating a clinical significance of 14-3-3ε and mTORC1 cooperation in the context of myeloma. One of the most conserved functions of mTORC1 is to promote translation. We therefore assessed the impact of YWHAE on global translational efficiencies in MM cells, and observed significant impact on nascent protein synthesis by YWHAE modulation. 14-3-3ε KD induced 4EBP1 de-phosphorylation through inhibited mTORC1, and concomitantly induced EIF2α phosphorylation. Both effects inhibited translation initiation complex formation, mechanistically supporting a strong protein synthesis arrest. These data show the modulation of several hubs of the signaling apparatus controlling translation initiation in response to YWHAE modulation, ultimately producing a marked protein synthesis inhibition. Deregulated translational control is a central feature of MM. Our findings highlight a unique function for YWHAE as promoter of MM cell survival through regulation of mTOR-dependent protein synthesis and apoptosis. Pharmacological inhibition of YWHAE/14-3-3ε is therefore a possibility to specifically target malignancies with deregulated translational control such as MM. Disclosures Anderson: C4 Therapeutics: Equity Ownership, Other: Scientific founder; Millennium Takeda: Consultancy; Gilead: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Consultancy; OncoPep: Equity Ownership, Other: Scientific founder; Celgene: Consultancy. Munshi:OncoPep: Other: Board of director.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...