GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Liu, Hui  (2)
  • Yan, Min  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Materials Vol. 13, No. 3 ( 2020-02-06), p. 751-
    In: Materials, MDPI AG, Vol. 13, No. 3 ( 2020-02-06), p. 751-
    Abstract: In order to investigate the methane adsorption characteristics of coal seam materials in a “solid–gas” coupling physical simulation experiment, activated alumina, silica gel, the 3Å molecular sieve, 4Å molecular sieve and 5Å molecular sieve were selected as adsorption materials. According to the pore structure and adsorption characteristics, coal samples at the Aiweiergou #1890 working face were prepared as compared materials. The WY-98A methane adsorption coefficient measuring instrument was used to carry out this adsorption experiment under different temperatures, particle sizes and moisture contents. The results suggested that the adsorption principles of three kinds of molecular sieves under multiple factors do not fully fit a Langmuir adsorption model, and cannot be used as adsorption materials. The changing trend of the adsorption increment of activated alumina and silica gel are similar to that of coal samples, so they can be used as a coal-like materials. The methane adsorption coefficient a value changing trends of activated alumina and silica gel appear to be the same as the Aiweiergou #1890 coal samples, but the results from silica gel are closer to that of coal samples. Thus, silica gel is preferred as the adsorption material. The result provides an experimental basis for the selection of methane-adsorbing materials and carrying out “solid–gas” coupling physical simulation experiments in a physically similar testing model.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Sciences, MDPI AG, Vol. 9, No. 3 ( 2019-02-04), p. 524-
    Abstract: Tectonic coal is a kind of soft coal that is generated during tectonic movement. Gas outbursts usually occur in seams containing both virgin coal and tectonic coal. To reveal the adsorption characteristics of this type of coal seam (containing both virgin coal and tectonic coal), both tectonic coal and virgin coal were collected from the same longwall face and a series of laboratory tests were conducted, including coal sorption tests and pore specific surface measurements. Both the tectonic coal and virgin coal were crushed into coal powder (0.18–0.25 mm) for the coal sorption tests. In these laboratory tests, different mass ratios between tectonic coal and virgin coal were tested. We found that with the increase of the percentage of tectonic coal, the adsorption volume showed a rising trend, reached its maximum value, and then decreased. The specific surface areas of the mixed coal samples had the same evolution trends as those of the adsorption volume. From the laboratory tests, we found that when the mass ratio of virgin coal to tectonic coal was 1:1, both the adsorption volume and the specific surface areas reached their maximum values. Due to the percentage variation of the tectonic coal in the panel with the advancement of the longwall face, when the tectonic coal accounted for 50% of the total coal, the gas content would rise. Thus, proper measures should be adopted for outburst hazards control. The mathematical model between the change of specific surface area and the stress and strain of pore expansion before and after gas adsorption was established, and the relationship between the change of pore structure and gas emission before and after gas adsorption was obtained. It provides a theoretical basis for further research on coal and gas outburst mechanisms.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...