GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
  • Liu, Huan  (2)
  • Yang, Ruiping  (2)
Material
Publisher
  • AIP Publishing  (2)
Person/Organisation
Language
Years
  • 1
    In: Review of Scientific Instruments, AIP Publishing, Vol. 92, No. 5 ( 2021-05-01)
    Abstract: An Overhauser geomagnetic sensor is a precise instrument commonly employed for geomagnetic field observation, magnetic surveys, and so on. Currently, the miniaturization of the Overhauser geomagnetic sensor is limited due to the lower signal-to-noise ratio. Thus, how to effectively extract weaker free induction decay (FID) signal from a miniaturized sensor and how to improve the signal quality have become the bottleneck. To address these problems, we came up with an optimal design of the FID signal sensing coil for a miniaturized Overhauser geomagnetic sensor and propose a front-end matching circuit for the sensing coil to inhibit the attenuation of the signal amplitude caused by high impedance, further reducing the overall noise floor of the signal acquisition system. Finally, the field experimental results show that the miniaturized prototype sensor has a smaller volume and mass with an approximate performance compared with the commercial sensor.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Review of Scientific Instruments Vol. 93, No. 3 ( 2022-03-01)
    In: Review of Scientific Instruments, AIP Publishing, Vol. 93, No. 3 ( 2022-03-01)
    Abstract: Fluxgate sensors are currently widely used for weak magnetic field measurement because of their relatively great performance, such as resolution, power consumption, and measurement of vector magnetic fields directly. Since the analog fluxgate sensor has some drawbacks, e.g., it would be influenced by the noise of the analog circuit. Hence, in recent years, the analog circuit is gradually inclined to be realized by digital processing in which the software parameter adjustment is employed to replace the analog components, which can greatly improve the flexibility of the design. This paper proposes a digital single-axis fluxgate sensor according to the cobalt-based amorphous effect. To be specific, the analog signal output by the fluxgate is sampled directly by an analog-to-digital converter to obtain the signal waveform in digital form after amplification. The demodulation, filtering, and integration of the signal are all solved by mathematical algorithms. Based on the working principle of the fluxgate sensor, the selection of the magnetic core material and coil winding method of the fluxgate sensor probe is introduced in detail. The design and function of the excitation circuit and preamplifier circuit, as well as the specific realization of digital signal processing, are described. Finally, the performance test of the digital fluxgate sensor was performed under laboratory conditions, and the magnetic anomaly detection comparison experiment was performed outdoors with commercial fluxgate sensors. To sum up, the linearity of the digital single-axis fluxgate sensor is better than 1 × 10−5, and the root mean square noise value is below 0.1 nT. At the same time, it has good magnetic field tracking performance and is extremely sensitive to the magnetic field of the measurement area.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...