GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (4)
  • Liu, Guohui  (4)
Material
Publisher
  • Hindawi Limited  (4)
Language
Years
  • 1
    In: BioMed Research International, Hindawi Limited, Vol. 2021 ( 2021-6-22), p. 1-8
    Abstract: Deep venous thrombosis (DVT) is a common complication in patients with lower extremity fractures, causing delays in recovery short-term and possible impacts on quality of life long-term. Early prediction and prevention of thrombosis can effectively reduce patient pain while improving outcomes. Although research on the risk factors for thrombosis is prevalent, there is a stark lack of clinical predictive models for DVT occurrence specifically in patients with lower limb fractures. In this study, we aim to propose a new thrombus prediction model for lower extremity fracture patients. Data from 3300 patients with lower limb fractures were collected from Wuhan Union Hospital and Hebei Third Hospital, China. Patients who met our inclusion criteria were divided into a thrombosis and a nonthrombosis group. A multivariate logistic regression analysis was carried out to identify predictors with obvious effects, and the corresponding formulas were used to establish the model. Model performance was evaluated using a discrimination and correction curve. 2662 patients were included in the regression analysis, with 1666 in the thrombosis group and 996 in the nonthrombosis group. Predictive factors included age, Body Mass Index (BMI), fracture-fixation types, energy of impact at the time of injury, blood transfusion during hospitalization, and use of anticoagulant drugs. The discriminative ability of the model was verified using the C-statistic (0.676). For the convenience of clinical use, a score table and nomogram were compiled. Data from two centers were used to establish a novel thrombus prediction model specific for patients with lower limb fractures, with verified predictive ability.
    Type of Medium: Online Resource
    ISSN: 2314-6141 , 2314-6133
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2698540-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Stem Cells International, Hindawi Limited, Vol. 2022 ( 2022-7-13), p. 1-9
    Abstract: Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest. Herein, we review and discuss recent studies exploring the mechanisms and functions of ferroptosis in different bone-related cells, including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. The association between ferroptosis and disorders of bone homeostasis is also explored in this review. Overall, we aim to provide a detailed overview of ferroptosis, summarizing recent understanding on its role in regulation of bone physiology and bone disease pathogenesis.
    Type of Medium: Online Resource
    ISSN: 1687-9678 , 1687-966X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2573856-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2021 ( 2021-10-25), p. 1-12
    Abstract: Oxidative stress is relevant in compression-induced nucleus pulposus (NP) cell apoptosis and intervertebral disc (IVD) degeneration. Exosomes derived from bone mesenchymal stem cells (BMSCs-Exos) are key secretory products of MSCs, with important roles in tissue regeneration. This research is aimed at studying the protective impact of BMSCs-Exos on NP cell apoptosis caused by compression and investigating the underlying mechanisms. Our results indicated that we isolated BMSCs successfully. Exosomes were isolated from the BMSCs and found to alleviate the inhibitory effect that compression has on proliferation and viability in NP cells, decreasing the toxic effects of compression-induced NP cells. AnnexinV/PI double staining and TUNEL assays indicated that the BMSCs-Exos reduced compression-induced apoptosis. In addition, our research found that BMSCs-Exos suppressed compression-mediated NP oxidative stress by detecting the ROS and malondialdehyde level. Furthermore, BMSCs-Exos increased the mitochondrial membrane potential and alleviated compression-induced mitochondrial damage. These results indicate that BMSCs-Exos alleviate compression-mediated NP apoptosis by suppressing oxidative stress, which may provide a promising cell-free therapy for treating IVD degeneration.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Stem Cells International, Hindawi Limited, Vol. 2023 ( 2023-5-24), p. 1-10
    Abstract: Bone mesenchymal stem cells (BMSCs) play an important role in maintaining the dynamic balance of bone metabolism. Recent studies have reported that a decrease in the osteogenic function of MSCs is strongly associated with osteoporosis. Melatonin is a neuroendocrine hormone produced in the pineal gland and is essential in the physiological regulation. This study is aimed at exploring the effect of melatonin on MSCs osteoblastic differentiation and elucidate the underlying mechanisms. We isolated BMSCs from rat bone marrow and demonstrated that melatonin improved osteogenic differentiation of BMSCs by the alizarin red staining and ALP staining. We then showed that melatonin enhanced osteogenic gene expression in BMSCs, including ALP, Col 1, OCN, OPN, and RUNX2. We further revealed that melatonin inhibited the inflammatory response of BMSCs by suppressing the NF-κB signaling pathways. In light of this, we found that the NF-κB pathway-specific activator TNF-α activated the NF-κB pathway, inhibited osteogenic differentiation, and induced inflammatory response in BMSCs. Melatonin was found to reverse the inhibitory effect of TNF-α on osteogenic differentiation and inflammation in BMSCs. Taken together, these findings indicated that melatonin may have therapeutic potential to be used for the treatment of osteoporosis.
    Type of Medium: Online Resource
    ISSN: 1687-9678 , 1687-966X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2573856-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...