GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Liu, Guangyue  (3)
  • 2020-2024  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 2020-2024  (3)
Year
  • 1
    In: Remote Sensing, MDPI AG, Vol. 14, No. 1 ( 2022-01-05), p. 232-
    Abstract: An accurate and detailed vegetation map is of crucial significance for understanding the spatial heterogeneity of subsurfaces, which can help to characterize the thermal state of permafrost. The absence of an alpine swamp meadow (ASM) type, or an insufficient resolution (usually km-level) to capture the spatial distribution of the ASM, greatly limits the availability of existing vegetation maps in permafrost modeling of the Qinghai-Tibet Plateau (QTP). This study generated a map of the vegetation type at a spatial resolution of 30 m on the central QTP. The random forest (RF) classification approach was employed to map the vegetation based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. Validation using a train-test split (i.e., 70% of the samples were randomly selected to train the RF model, while the remaining 30% were used for validation and a total of 1000 runs) showed that the average overall accuracy and Kappa coefficient of the RF approach were 0.78 (0.68–0.85) and 0.69 (0.64–0.74), respectively. The confusion matrix showed that the overall accuracy and Kappa coefficient of the predicted vegetation map reached 0.848 (0.844–0.852) and 0.790 (0.785–0.796), respectively. The user accuracies for the ASM, alpine meadow, alpine steppe, and alpine desert were 95.0%, 83.3%, 82.4%, and 86.7%, respectively. The most important variables for vegetation type prediction were two vegetation indices, i.e., NDVI and EVI. The surface reflectance of visible and shortwave infrared bands showed a secondary contribution, and the brightness temperature and the surface temperature of the thermal infrared bands showed little contribution. The dominant vegetation in the study area is alpine steppe and alpine desert. The results of this study can provide an accurate and detailed vegetation map, especially for the distribution of the ASM, which can help to improve further permafrost studies.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 12, No. 5 ( 2020-05-01), p. 1287-
    Abstract: Lakes on the Qinghai–Tibetan Plateau (QTP) have experienced significant changes, especially the prevailing lake expansion since 2000 in the endorheic basin. The influence of permafrost thawing on lake expansion is significant but rarely considered in previous studies. In this study, based on Landsat images and permafrost field data, the spatial-temporal area changes of lakes of more than 5 km2 in the endorheic basin on the QTP during 2000–2017 is examined and the impact of permafrost degradation on lake expansion is discussed. The main results are that permafrost characteristics and its degradation trend have close relationships with lake changes. Lake expansion in the endorheic basin showed a southwest–northeast transition from shrinking to stable to rapidly expanding, which corresponded well with the permafrost distribution from island-discontinuous to seasonally frozen ground to continuous permafrost. A dramatic lake expansion in continuous permafrost showed significant spatial differences; lakes expanded significantly in northern and eastern continuous permafrost with a higher ground ice content but slightly in southern continuous permafrost with a lower ground ice content. This spatial pattern was mainly attributed to the melting of ground ice in shallow permafrost associated with accelerating permafrost degradation. Whereas, some lakes in the southern zones of island-discontinuous permafrost were shrinking, which was mainly because the extended taliks arising from the intensified permafrost degradation have facilitated surface water and suprapermafrost groundwater discharge to subpermafrost groundwater and thereby drained the lakes. Based on observation and simulated data, the melting of ground ice at shallow depths below the permafrost table accounted for 21.2% of the increase in lake volume from 2000 to 2016.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 14, No. 10 ( 2022-05-20), p. 2450-
    Abstract: Permafrost distribution is of great significance for the study of climate, ecology, hydrology, and infrastructure construction in high-cold mountain regions with complex topography. Therefore, updated high-resolution permafrost distribution mapping is necessary and highly demanded in related fields. This case study conducted in a small catchment in the northeast of the Qinghai Tibet Plateau proposes a new method of using ground-penetrating radar (GPR) to detect the stratigraphic structure, interpret the characteristics of frozen ground, and extract the boundaries of permafrost patches in mountain areas. Thus, an empirical–statistical model of mountain frozen ground zonation, along with aspect (ASP) adjustment, is established based on the results of the GPR data interpretation. The spatial mapping of the frozen ground based on this model is compared with a field survey dataset and two existing permafrost distribution maps, and their consistencies are all higher than 80. In addition, the new map provides more details on the distribution of frozen ground. In this case, the influence of ASP on the distribution of permafrost in mountain areas is revealed: the adjustment of ASP on the lower limit of continuous and discontinuous permafrost is 180–200 m, the difference in the annual mean ground temperature between sunny and shady slopes is up to 1.4–1.6 °C, and the altitude-related temperature variation and uneven distribution of solar radiation in different ASPs comprehensively affect the zonation of mountain frozen ground. This work supplements the traditional theory of mountain permafrost zonation, the results of which are of value to relevant scientific studies and instructive to engineering construction in this region.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...