GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (6)
  • Liu, Danyang  (6)
  • 1
    In: Biosensors, MDPI AG, Vol. 12, No. 8 ( 2022-07-26), p. 566-
    Abstract: Biosensors are powerful analytical tools used to identify and detect target molecules. Electrochemical biosensors, which combine biosensing with electrochemical analysis techniques, are efficient analytical instruments that translate concentration signals into electrical signals, enabling the quantitative and qualitative analysis of target molecules. Electrochemical biosensors have been widely used in various fields of detection and analysis due to their high sensitivity, superior selectivity, quick reaction time, and inexpensive cost. However, the signal changes caused by interactions between a biological probe and a target molecule are very weak and difficult to capture directly by using detection instruments. Therefore, various signal amplification strategies have been proposed and developed to increase the accuracy and sensitivity of detection systems. This review serves as a reference for biosensor and detector research, as it introduces the research progress of electrochemical signal amplification strategies in olfactory and taste evaluation. It also discusses the latest signal amplification strategies currently being employed in electrochemical biosensors for nanomaterial development, enzyme labeling, and nucleic acid amplification techniques, and highlights the most recent work in using cell tissues as biosensitive elements.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662125-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecules, MDPI AG, Vol. 28, No. 8 ( 2023-04-07), p. 3286-
    Abstract: Endogenous and exogenous estrogens are widely present in food and food packaging, and high levels of natural estrogens and the misuse or illegal use of synthetic estrogens can lead to endocrine disorders and even cancer in humans. Therefore, it is consequently important to accurately evaluate the presence of food-functional ingredients or toxins with estrogen-like effects. In this study, an electrochemical sensor based on G protein-coupled estrogen receptors (GPERs) was fabricated by self-assembly, modified by double-layered gold nanoparticles, and used to measure the sensing kinetics for five GPER ligands. The interconnected allosteric constants (Ka) of the sensor for 17β-estradiol, resveratrol, G-1, G-15, and bisphenol A were 8.90 × 10−17, 8.35 × 10−16, 8.00 × 10−15, 5.01 × 10−15, and 6.65 × 10−16 mol/L, respectively. The sensitivity of the sensor for the five ligands followed the order of 17β-estradiol 〉 bisphenol A 〉 resveratrol 〉 G-15 〉 G-1. The receptor sensor also demonstrated higher sensor sensitivity for natural estrogens than exogenous estrogens. The results of molecular simulation docking showed that the residues Arg, Glu, His, and Asn of GPER mainly formed hydrogen bonds with -OH, C-O-C, or -NH-. In this study, simulating the intracellular receptor signaling cascade with an electrochemical signal amplification system enabled us to directly measure GPER–ligand interactions and explore the kinetics after the self-assembly of GPERs on a biosensor. This study also provides a novel platform for the accurate functional evaluation of food-functional components and toxins.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biosensors, MDPI AG, Vol. 12, No. 10 ( 2022-10-17), p. 888-
    Abstract: In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic, and the spike protein has been reported to be an important drug target for anti-COVID-19 treatment. As such, in this study, we successfully developed a novel electrochemical receptor biosensor by immobilizing the SARS-CoV-2 spike protein and using AuNPs-HRP as an electrochemical signal amplification system. Moreover, the time-current method was used to quantify seven antiviral drug compounds, such as arbidol and chloroquine diphosphate. The results show that the spike protein and the drugs are linearly correlated within a certain concentration range and that the detection sensitivity of the sensor is extremely high. In the low concentration range of linear response, the kinetics of receptor–ligand interactions are similar to that of an enzymatic reaction. Among the investigated drug molecules, bromhexine exhibits the smallest Ka value, and thus, is most sensitively detected by the sensor. Hydroxychloroquine exhibits the largest Ka value. Molecular docking simulations of the spike protein with six small-molecule drugs show that residues of this protein, such as Asp, Trp, Asn, and Gln, form hydrogen bonds with the -OH or -NH2 groups on the branched chains of small-molecule drugs. The electrochemical receptor biosensor can directly quantify the interaction between the spike protein and drugs such as abidor and hydroxychloroquine and perform kinetic studies with a limit of detection 3.3 × 10−20 mol/L, which provides a new research method and idea for receptor–ligand interactions and pharmacodynamic evaluation.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662125-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecules, MDPI AG, Vol. 28, No. 3 ( 2023-02-02), p. 1453-
    Abstract: In this study, an electrochemical sensor was developed by immobilizing colon cancer and the adjacent tissues (peripheral healthy tissues on both sides of the tumor) and was used to investigate the receptor sensing kinetics of glucose, sodium glutamate, disodium inosinate, and sodium lactate. The results showed that the electrical signal triggered by the ligand–receptor interaction presented hyperbolic kinetic characteristics similar to the interaction of an enzyme with its substrate. The results indicated that the activation constant values of the colon cancer tissue and adjacent tissues differed by two orders of magnitude for glucose and sodium glutamate and around one order of magnitude for disodium inosinate. The cancer tissues did not sense sodium lactate, whereas the adjacent tissues could sense sodium lactate. Compared with normal cells, cancer cells have significantly improved nutritional sensing ability, and the improvement of cancer cells’ sensing ability mainly depends on the cascade amplification of intracellular signals. However, unlike tumor-adjacent tissues, colon cancer cells lose the ability to sense lactate. This provides key evidence for the Warburg effect of cancer cells. The methods and results in this study are expected to provide a new way for cancer research, treatment, the screening of anticancer drugs, and clinical diagnoses.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Agronomy, MDPI AG, Vol. 13, No. 4 ( 2023-04-06), p. 1065-
    Abstract: To study the characteristics of the β–glucosidase enzymatic reaction in wheat field soil under the condition of reducing the application of chemical fertilizer, five fertilization treatments were established, including no fertilizer (CK), chemical fertilizer (F), organic fertilizer (OF), 25% organic fertilizer plus 75% chemical fertilizer (25% OF), and 50% organic fertilizer plus 50% chemical fertilizer (50% OF). The activity of β–glucosidase and its kinetic and thermodynamic characteristics were analyzed by using microplate p–nitrophenol colorimetry. The results showed that the Vmax values of soil β–glucosidase in the organic substitution of chemical fertilizer treatment were higher than those in the chemical fertilizer and no fertilizer treatments, and the Km values were lower than those in the chemical fertilizer and no fertilizer treatments at the different growth stages. The Vmax value in the 25% OF treatment was the highest at the jointing stage and that of the OF treatment was the highest at the booting stage; the Km value in the 50% OF treatment was the lowest at the different growth stages. Compared with the chemical fertilizer and no fertilizer treatments, the application of organic fertilizer effectively reduced thermodynamic parameters such as Ea, Q10, ∆H, ∆G, and ∆S at the jointing and booting stages of wheat. The thermodynamic parameters in the 25% OF treatment were the lowest at the jointing stage and those in the OF treatment were the lowest at the booting stage. A reasonable amount of organic fertilizer is more beneficial to enzymatic reactions and improves the soil quality and the ability to supply nutrients to wheat cultivation.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 16 ( 2023-08-15), p. 4036-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 16 ( 2023-08-15), p. 4036-
    Abstract: Detecting impact craters on the Martian surface is a critical component of studying Martian geomorphology and planetary evolution. Accurately determining impact crater boundaries, which are distinguishable geomorphic units, is important work in geological and geomorphological mapping. The Martian topography is more complex than that of the Moon, making the accurate detection of impact crater boundaries challenging. Currently, most techniques concentrate on replacing impact craters with circles or points. Accurate boundaries are more challenging to identify than simple circles. Therefore, a boundary delineator for Martian crater instances (BDMCI) using fusion data is proposed. First, the optical image, digital elevation model (DEM), and slope of elevation difference after filling the DEM (called slope of EL_Diff to highlight the boundaries of craters) were used in combination. Second, a benchmark dataset with annotations for accurate impact crater boundaries was created, and sample regions were chosen using prior geospatial knowledge and an optimization strategy for the proposed BDMCI framework. Third, the multiple models were fused to train at various scales using deep learning. To repair patch junction fractures, several postprocessing methods were devised. The proposed BDMCI framework was also used to expand the catalog of Martian impact craters between 65°S and 65°N. This study provides a reference for identifying terrain features and demonstrates the potential of deep learning algorithms in planetary science research.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...