GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Astrophysical Journal, American Astronomical Society, Vol. 950, No. 2 ( 2023-06-01), p. 119-
    Abstract: The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 〉 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 672 ( 2023-04), p. A36-
    Abstract: We present new neutral atomic carbon [C  I ] ( 3 P 1  →  3 P 0 ) mapping observations within the inner ∼7 kpc and ∼4 kpc of the disks of NGC 3627 and NGC 4321 at a spatial resolution of 190 pc and 270 pc, respectively, using the Atacama Large Millimeter/Submillimeter Array (ALMA) Atacama Compact Array (ACA). We combine these with the CO(2−1) data from PHANGS-ALMA, and literature [C  I ] and CO data for two other starburst and/or active galactic nucleus (AGN) galaxies (NGC 1808, NGC 7469) with the aim of studying: (a) the spatial distributions of C  I and CO emission; (b) the observed line ratio R C  I /CO = I [ C  I ](1−0 ) / I CO(2−1 ) as a function of various galactic properties; and (c) the abundance ratio of [C  I /CO]. We find excellent spatial correspondence between C  I and CO emission and nearly uniform R C  I /CO ∼ 0.1 across the majority of the star-forming disks of NGC 3627 and NGC 4321. However, R C  I /CO strongly varies from ∼0.05 at the center of NGC 4321 to 〉 0.2 − 0.5 in NGC 1808’s starbursting center and NGC 7469’s center with an X-ray-luminous AGN. Meanwhile, R C  I /CO does not obviously vary with ⟨ U ⟩, which is in line with predictions from photodissociation-dominated region (PDR) models. We also find a mildly decreasing R C  I /CO value with an increasing metallicity over 0.7 − 0.85  Z ⊙ , which is consistent with the literature. Assuming various typical interstellar medium (ISM) conditions representing giant molecular clouds, active star-forming regions, and strong starbursting environments, we calculated the (non)local-thermodynamic-equilibrium radiative transfer and estimated the [C  I /CO] abundance ratio to be ∼0.1 across the disks of NGC 3627 and NGC 4321, similar to previous large-scale findings in Galactic studies. However, this abundance ratio likely experiences a substantial increase, up to ∼1 and ≳1 − 5 in NGC 1808’s starburst and NGC 7469’s strong AGN environments, respectively. This result is in line with the expectations for cosmic-ray dominated region (CRDR) and X-ray dominated region (XDR) chemistry. Finally, we do not find robust evidence for a generally CO-dark-and-C  I -bright gas in the disk areas we probed.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L8-
    Abstract: JWST observations of polycyclic aromatic hydrocarbon (PAH) emission provide some of the deepest and highest resolution views of the cold interstellar medium (ISM) in nearby galaxies. If PAHs are well mixed with the atomic and molecular gas and illuminated by the average diffuse interstellar radiation field, PAH emission may provide an approximately linear, high-resolution, high-sensitivity tracer of diffuse gas surface density. We present a pilot study that explores using PAH emission in this way based on Mid-Infrared Instrument observations of IC 5332, NGC 628, NGC 1365, and NGC 7496 from the Physics at High Angular resolution in Nearby GalaxieS-JWST Treasury. Using scaling relationships calibrated in Leroy et al., scaled F1130W provides 10–40 pc resolution and 3 σ sensitivity of Σ gas ∼ 2 M ⊙ pc −2 . We characterize the surface densities of structures seen at 〈 7 M ⊙ pc −2 in our targets, where we expect the gas to be H i -dominated. We highlight the existence of filaments, interarm emission, and holes in the diffuse ISM at these low surface densities. Below ∼10 M ⊙ pc −2 for NGC 628, NGC 1365, and NGC 7496 the gas distribution shows a “Swiss cheese”-like topology due to holes and bubbles pervading the relatively smooth distribution of the diffuse ISM. Comparing to recent galaxy simulations, we observe similar topology for the low-surface-density gas, though with notable variations between simulations with different setups and resolution. Such a comparison of high-resolution, low-surface-density gas with simulations is not possible with existing atomic and molecular gas maps, highlighting the unique power of JWST maps of PAH emission.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L10-
    Abstract: We explore the relationship between mid-infrared (mid-IR) and CO rotational line emission from massive star-forming galaxies, which is one of the tightest scalings in the local universe. We assemble a large set of unresolved and moderately (∼1 kpc) spatially resolved measurements of CO (1–0) and CO (2–1) intensity, I CO , and mid-IR intensity, I MIR , at 8, 12, 22, and 24 μ m. The I CO versus I MIR relationship is reasonably described by a power law with slopes 0.7–1.2 and normalization I CO ∼ 1 K km s −1 at I MIR ∼ 1 MJy sr −1 . Both the slopes and intercepts vary systematically with choice of line and band. The comparison between the relations measured for CO (1–0) and CO (2–1) allow us to infer that R 21 ∝ I MIR 0.2 , in good agreement with other work. The 8 μ m and 12 μ m bands, with strong polycyclic aromatic hydrocarbon (PAH) features, show steeper CO versus mid-IR slopes than the 22 and 24 μ m, consistent with PAH emission arising not just from CO-bright gas but also from atomic or CO-dark gas. The CO-to-mid-IR ratio correlates with global galaxy stellar mass ( M ⋆ ) and anticorrelates with star formation rate/ M ⋆ . At ∼1 kpc resolution, the first four PHANGS–JWST targets show CO-to-mid-IR relationships that are quantitatively similar to our larger literature sample, including showing the steep CO-to-mid-IR slopes for the JWST PAH-tracing bands, although we caution that these initial data have a small sample size and span a limited range of intensities.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L7-
    Abstract: We present maps of the 3.3 μ m polycyclic aromatic hydrocarbon (PAH) emission feature in NGC 628, NGC 1365, and NGC 7496 as observed with the Near-Infrared Camera imager on JWST from the PHANGS–JWST Cycle 1 Treasury project. We create maps that isolate the 3.3 μ m PAH feature in the F335M filter (F335M PAH ) using combinations of the F300M and F360M filters for removal of starlight continuum. This continuum removal is complicated by contamination of the F360M by PAH emission and variations in the stellar spectral energy distribution slopes between 3.0 and 3.6 μ m. We modify the empirical prescription from Lai et al. to remove the starlight continuum in our highly resolved galaxies, which have a range of starlight- and PAH-dominated lines of sight. Analyzing radially binned profiles of the F335M PAH emission, we find that between 5% and 65% of the F335M intensity comes from the 3.3 μ m feature within the inner 0.5 r 25 of our targets. This percentage systematically varies from galaxy to galaxy and shows radial trends within the galaxies related to each galaxy’s distribution of stellar mass, interstellar medium, and star formation. The 3.3 μ m emission is well correlated with the 11.3 μ m PAH feature traced with the MIRI F1130W filter, as is expected, since both features arise from C–H vibrational modes. The average F335M PAH /F1130W ratio agrees with the predictions of recent models by Draine et al. for PAHs with size and charge distributions shifted toward larger grains with normal or higher ionization.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L16-
    Abstract: Polycyclic aromatic hydrocarbons (PAHs) play a critical role in the reprocessing of stellar radiation and balancing the heating and cooling processes in the interstellar medium but appear to be destroyed in H ii regions. However, the mechanisms driving their destruction are still not completely understood. Using PHANGS–JWST and PHANGS–MUSE observations, we investigate how the PAH fraction changes in about 1500 H ii regions across four nearby star-forming galaxies (NGC 628, NGC 1365, NGC 7496, and IC 5332). We find a strong anticorrelation between the PAH fraction and the ionization parameter (the ratio between the ionizing photon flux and the hydrogen density) of H ii regions. This relation becomes steeper for more luminous H ii regions. The metallicity of H ii regions has only a minor impact on these results in our galaxy sample. We find that the PAH fraction decreases with the H α equivalent width—a proxy for the age of the H ii regions—although this trend is much weaker than the one identified using the ionization parameter. Our results are consistent with a scenario where hydrogen-ionizing UV radiation is the dominant source of PAH destruction in star-forming regions.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 257, No. 2 ( 2021-12-01), p. 43-
    Abstract: We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 941, No. 2 ( 2022-12-01), p. L27-
    Abstract: We combine JWST observations with Atacama Large Millimeter/submillimeter Array CO and Very Large Telescope MUSE H α data to examine off-spiral arm star formation in the face-on, grand-design spiral galaxy NGC 628. We focus on the northern spiral arm, around a galactocentric radius of 3–4 kpc, and study two spurs. These form an interesting contrast, as one is CO-rich and one CO-poor, and they have a maximum azimuthal offset in MIRI 21 μ m and MUSE H α of around 40° (CO-rich) and 55° (CO-poor) from the spiral arm. The star formation rate is higher in the regions of the spurs near spiral arms, but the star formation efficiency appears relatively constant. Given the spiral pattern speed and rotation curve of this galaxy and assuming material exiting the arms undergoes purely circular motion, these offsets would be reached in 100–150 Myr, significantly longer than the 21 μ m and H α star formation timescales (both 〈 10 Myr). The invariance of the star formation efficiency in the spurs versus the spiral arms indicates massive star formation is not only triggered in spiral arms, and cannot simply occur in the arms and then drift away from the wave pattern. These early JWST results show that in situ star formation likely occurs in the spurs, and that the observed young stars are not simply the “leftovers” of stellar birth in the spiral arms. The excellent physical resolution and sensitivity that JWST can attain in nearby galaxies will well resolve individual star-forming regions and help us to better understand the earliest phases of star formation.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L24-
    Abstract: The first JWST observations of nearby galaxies have unveiled a rich population of bubbles that trace the stellar-feedback mechanisms responsible for their creation. Studying these bubbles therefore allows us to chart the interaction between stellar feedback and the interstellar medium, and the larger galactic flows needed to regulate star formation processes globally. We present the first catalog of bubbles in NGC 628, visually identified using Mid-Infrared Instrument F770W Physics at High Angular resolution in Nearby GalaxieS (PHANGS)–JWST observations, and use them to statistically evaluate bubble characteristics. We classify 1694 structures as bubbles with radii between 6 and 552 pc. Of these, 31% contain at least one smaller bubble at their edge, indicating that previous generations of star formation have a local impact on where new stars form. On large scales, most bubbles lie near a spiral arm, and their radii increase downstream compared to upstream. Furthermore, bubbles are elongated in a similar direction to the spiral-arm ridgeline. These azimuthal trends demonstrate that star formation is intimately connected to the spiral-arm passage. Finally, the bubble size distribution follows a power law of index p = −2.2 ± 0.1, which is slightly shallower than the theoretical value by 1–3.5 σ that did not include bubble mergers. The fraction of bubbles identified within the shells of larger bubbles suggests that bubble merging is a common process. Our analysis therefore allows us to quantify the number of star-forming regions that are influenced by an earlier generation, and the role feedback processes have in setting the global star formation rate. With the full PHANGS–JWST sample, we can do this for more galaxies.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 944, No. 2 ( 2023-02-01), p. L19-
    Abstract: We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS–JWST imaging with new Atacama Large Millimeter/submillimeter Array multi- J CO (1–0, 2–1 and 4–3) and [ C i ] (1–0) mapping, which we use to trace CO excitation via R 42 = I CO(4−3) / I CO(2−1) and R 21 = I CO(2−1) / I CO(1−0) and dissociation via R CICO = I [CI](1−0) / I CO(2−1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R 42 ) and increased signatures of dissociation (higher R CICO ) in the downstream regions. There, radiative-transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R 42 and R CICO with local conditions across the regions and find that both correlate with near-IR 2 μ m emission tracing the YMCs and with both polycyclic aromatic hydrocarbon (11.3 μ m) and dust continuum (21 μ m) emission. In general, R CICO exhibits ∼0.1 dex tighter correlations than R 42 , suggesting C i to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4–3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...