GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Genetics Vol. 209, No. 1 ( 2018-05-01), p. 291-305
    In: Genetics, Oxford University Press (OUP), Vol. 209, No. 1 ( 2018-05-01), p. 291-305
    Abstract: Pigmentation has emerged as a premier model for understanding the genetic basis of phenotypic evolution, and a growing catalog of color loci is starting to reveal biases in the mutations, genes, and genetic architectures underlying color variation in the wild. However, existing studies have sampled a limited subset of taxa, color traits, and developmental stages. To expand the existing sample of color loci, we performed QTL mapping analyses on two types of larval pigmentation traits that vary among populations of the redheaded pine sawfly (Neodiprion lecontei): carotenoid-based yellow body color and melanin-based spotting pattern. For both traits, our QTL models explained a substantial proportion of phenotypic variation and suggested a genetic architecture that is neither monogenic nor highly polygenic. Additionally, we used our linkage map to anchor the current N. lecontei genome assembly. With these data, we identified promising candidate genes underlying (1) a loss of yellow pigmentation in populations in the mid-Atlantic/northeastern United States [C locus-associated membrane protein homologous to a mammalian HDL receptor-2 gene (Cameo2) and lipid transfer particle apolipoproteins II and I gene (apoLTP-II/I)], and (2) a pronounced reduction in black spotting in Great Lakes populations [members of the yellow gene family, tyrosine hydroxylase gene (pale), and dopamine N-acetyltransferase gene (Dat)] . Several of these genes also contribute to color variation in other wild and domesticated taxa. Overall, our findings are consistent with the hypothesis that predictable genes of large effect contribute to color evolution in nature.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Integrated Pest Management Vol. 14, No. 1 ( 2023-01-01)
    In: Journal of Integrated Pest Management, Oxford University Press (OUP), Vol. 14, No. 1 ( 2023-01-01)
    Abstract: Pine sawflies (Hymenoptera: Diprionidae) are eruptive herbivores found throughout eastern North America. The Diprionidae family, which contains at least 140 species, constitutes the most persistent threat to conifers as population outbreaks can cause widespread defoliation. Because some species are more prone to large, destructive outbreaks than others, species identification is critical to effective management. Although existing taxonomic keys are primarily based on internal adult morphology, substantial variation among species in larval color traits, geographic location, overwintering strategy, host plant, and egg patterns can be diagnostic at the species level. Here, we focus on the Pinaceae-feeding subfamily Diprioninae, of which there are 25 species in eastern North America. We describe the general biology, life cycle, and host-use ecology of Diprioninae, with an emphasis on the variation among these traits within this subfamily. In addition, we provide tools for species identification, including a taxonomic key that utilizes external diagnostic characteristics. Finally, we discuss available management strategies.
    Type of Medium: Online Resource
    ISSN: 2155-7470
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2607369-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 35, No. 4 ( 2018-04-01), p. 792-806
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Heredity Vol. 114, No. 3 ( 2023-05-25), p. 246-258
    In: Journal of Heredity, Oxford University Press (OUP), Vol. 114, No. 3 ( 2023-05-25), p. 246-258
    Abstract: Biological introductions are unintended “natural experiments” that provide unique insights into evolutionary processes. Invasive phytophagous insects are of particular interest to evolutionary biologists studying adaptation, as introductions often require rapid adaptation to novel host plants. However, adaptive potential of invasive populations may be limited by reduced genetic diversity—a problem known as the “genetic paradox of invasions.” One potential solution to this paradox is if there are multiple invasive waves that bolster genetic variation in invasive populations. Evaluating this hypothesis requires characterizing genetic variation and population structure in the invaded range. To this end, we assemble a reference genome and describe patterns of genetic variation in the introduced white pine sawfly, Diprion similis. This species was introduced to North America in 1914, where it has rapidly colonized the thin-needled eastern white pine (Pinus strobus), making it an ideal invasion system for studying adaptation to novel environments. To evaluate evidence of multiple introductions, we generated whole-genome resequencing data for 64 D. similis females sampled across the North American range. Both model-based and model-free clustering analyses supported a single population for North American D. similis. Within this population, we found evidence of isolation-by-distance and a pattern of declining heterozygosity with distance from the hypothesized introduction site. Together, these results support a single-introduction event. We consider implications of these findings for the genetic paradox of invasion and discuss priorities for future research in D. similis, a promising model system for invasion biology.
    Type of Medium: Online Resource
    ISSN: 0022-1503 , 1465-7333
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1466720-4
    detail.hit.zdb_id: 2518163-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Evolution Vol. 77, No. 2 ( 2023-02-04), p. 437-453
    In: Evolution, Oxford University Press (OUP), Vol. 77, No. 2 ( 2023-02-04), p. 437-453
    Abstract: When gene flow accompanies speciation, recombination can decouple divergently selected loci and loci conferring reproductive isolation. This barrier to sympatric divergence disappears when assortative mating and disruptive selection involve the same “magic” trait. Although magic traits could be widespread, the relative importance of different types of magic traits to speciation remains unclear. Because body size frequently contributes to host adaptation and assortative mating in plant-feeding insects, we evaluated several magic trait predictions for this trait in a pair of sympatric Neodiprion sawfly species adapted to different pine hosts. A large morphological dataset revealed that sawfly adults from populations and species that use thicker-needled pines are consistently larger than those that use thinner-needled pines. Fitness data from recombinant backcross females revealed that egg size is under divergent selection between the preferred pines. Lastly, mating assays revealed strong size-assortative mating within and between species in three different crosses, with the strongest prezygotic isolation between populations that have the greatest interspecific size differences. Together, our data support body size as a magic trait in pine sawflies and possibly many other plant-feeding insects. Our work also demonstrates how intraspecific variation in morphology and ecology can cause geographic variation in the strength of prezygotic isolation.
    Type of Medium: Online Resource
    ISSN: 0014-3820 , 1558-5646
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2036375-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Evolution, Oxford University Press (OUP), ( 2023-07-23)
    Abstract: Isolation by environment (IBE) is a population genomic pattern that arises when ecological barriers reduce gene flow between populations. Although current evidence suggests IBE is common in nature, few studies have evaluated the underlying mechanisms that generate IBE patterns. In this study, we evaluate five proposed mechanisms of IBE (natural selection against immigrants, sexual selection against immigrants, selection against hybrids, biased dispersal, environment-based phenological differences) that may give rise to host-associated differentiation within a sympatric population of the redheaded pine sawfly, Neodiprion lecontei, a species for which IBE has previously been detected. We first characterize the three pine species used by N. lecontei at the site, finding morphological and chemical differences among the hosts that could generate divergent selection on sawfly host-use traits. Next, using morphometrics and ddRAD sequencing, we detect modest phenotypic and genetic differentiation among sawflies originating from different pines that is consistent with recent, in situ divergence. Finally, via a series of laboratory assays – including assessments of larval performance on different hosts, adult mate and host preferences, hybrid fitness, and adult eclosion timing – we find evidence that multiple mechanisms contribute to IBE in N. lecontei. Overall, our results suggest IBE can emerge quickly, possibly due to multiple mechanisms acting in concert to reduce migration between different environments.
    Type of Medium: Online Resource
    ISSN: 0014-3820 , 1558-5646
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2036375-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...