GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Tomography, MDPI AG, Vol. 1, No. 1 ( 2015-09-01), p. 53-60
    Abstract: Prior reports have suggested that delayed 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) oncology imaging can improve the contrast-to-noise ratio (CNR) for known lesions. Our goal was to estimate realistic bounds for lesion detectability for static measurements within 1 to 4 hours between FDG injection and image acquisition. Tumor and normal tissue kinetic model parameters were estimated from dynamic PET studies of patients with early-stage breast cancer. These parameters were used to generate time-activity curves (TACs) for up to 4 hours, for which we assumed both nonreversible and reversible models with different rates of FDG dephosphorylation (k4). For each pair of tumor and normal tissue TACs, 600 PET sinogram realizations were generated, and images were reconstructed using the ordered subsets expectation maximization reconstruction algorithm. Test statistics for each tumor and normal tissue region of interest were output from the computer model observers and evaluated using a receiver operating characteristic analysis, with the calculated area under the curve (AUC) providing a measure of lesion detectability. For the nonreversible model (k4 = 0), the AUC increased in 11 of 23 (48%) patients for 1 to 2 hours after the current standard postradiotracer injection imaging window of 1 hour. This improvement was driven by increased tumor/normal tissue contrast before the impact of increased noise that resulted from radiotracer decay began to dominate the imaging signal. As k4 was increased from 0 to 0.01 min−1, the time of maximum detectability shifted earlier, due to decreasing FDG concentration in the tumor lowering the CNR. These results imply that delayed PET imaging may reveal inconspicuous lesions that otherwise would have gone undetected.
    Type of Medium: Online Resource
    ISSN: 2379-139X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2857000-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Tomography, MDPI AG, Vol. 6, No. 2 ( 2020-06-01), p. 60-64
    Abstract: The Clinical Trial Design and Development Working Group within the Quantitative Imaging Network focuses on providing support for the development, validation, and harmonization of quantitative imaging (QI) methods and tools for use in cancer clinical trials. In the past 10 years, the Group has been working in several areas to identify challenges and opportunities in clinical trials involving QI and radiation oncology. The Group has been working with Quantitative Imaging Network members and the Quantitative Imaging Biomarkers Alliance leadership to develop guidelines for standardizing the reporting of quantitative imaging. As a validation platform, the Group led a multireader study to test a semi-automated positron emission tomography quantification software. Clinical translation of QI tools cannot be possible without a continuing dialogue with clinical users. This article also highlights the outreach activities extended to cooperative groups and other organizations that promote the use of QI tools to support clinical decisions.
    Type of Medium: Online Resource
    ISSN: 2379-139X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2857000-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...