GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. B13-B13
    Abstract: Introduction: Gene fusions are important oncogenic drivers with significant clinical impact in some cancer types. This is particularly true in pediatric cancers that often have low mutational burden and lack other diagnostic markers and therapeutic targets. Many gene fusions are rare or private to the individual patient and can be difficult to detect with methods optimized for common fusions. Unbiased sequencing methods and expansive computational resources are needed for expanding our ability to characterize fusions. Building a comprehensive catalog of oncogenic gene fusions will improve our understanding of their diversity and fully harness their potential for clinical impact. Methods: Patients are eligible for the GAIN/iCat2 study if they have been diagnosed with high-risk or recurrent/refractory extracranial solid tumor at age 30 or less and have a sample available for sequencing. Enrolled patients with an unclear diagnosis after standard clinical testing are nominated for transcriptome sequencing by the study investigators. We developed a computational pipeline in Google Cloud for gene fusion discovery utilizing paired end Illumina RNA-Seq data, multiple fusion callers, and a custom algorithm for integrative data analysis. The multicaller fusion detection approach enables us to address the high false-positive rate typical for gene fusion calling in transcriptomic data while improving the sensitivity to detect the more challenging fusions. After filtering, the fusions are annotated using the databases of known fusions and cancer genes. The predicted fusion transcripts are inspected visually, and the fusions are selected based on relevance to diagnostic classification or therapy to be validated by an orthogonal method. Results: 41 tumor samples were sequenced and analyzed for gene fusions. A total of 203 candidate fusions were detected by two or more fusion callers. Based on functional annotations and potential impact on diagnosis or therapeutic approaches, 12 fusion transcripts of interest were identified, 10 of which were validated by either pre-enrollment testing or an orthogonal method. Of 16 mesenchymal cases, 6 validated fusions had diagnostic relevance and 3 validated fusions had therapeutic implications (ERC1-BRAF, RBPMS-NTRK2, and VCAN-IL23R). Two patients responded to matched targeted therapy. In one case, diagnostic classification was revised. Conclusions: Whole-transcriptome sequencing in this selected patient population identified some fusion transcripts with clinical relevance. Determining the biologic significance of previously unreported fusions will require orthogonal sequencing such as whole genome, functional studies, and analysis of larger patient populations. Improved accuracy and scalability of methods for large-scale gene fusion analysis in the growing public datasets are likely to expand the landscape of gene fusions in cancer. Citation Format: Alma Imamovic, Alanna J. Church, Laura B. Corson, Deirdre Reidy, Navin Pinto, Luke Maese, Theodore W. Laetsch, AeRang Kim, Susan I. Vear, Margaret E. Macy, Mark A. Applebaum, Rochelle Bagatell, Amit J. Sabnis, Daniel A. Weiser, Julia L. Glade-Bender, Gianna R. Strand, Lobin A. Lee, R. Seth Pinches, Catherine M. Clinton, Brian D. Crompton, Neal I. Lindeman, Steven G. DuBois, Katherine A. Janeway, Eliezer M. Van Allen. Leveraging cloud-based computational resources for gene fusion discovery with potential clinical implications for pediatric solid tumor patients [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B13.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 28, No. 8 ( 2022-08), p. 1581-1589
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 5 ( 2021-11), p. 1840-1852
    Abstract: Molecular tumor profiling is becoming a routine part of clinical cancer care, typically involving tumor-only panel testing without matched germline. We hypothesized that integrated germline sequencing could improve clinical interpretation and enhance the identification of germline variants with significant hereditary risks. MATERIALS AND METHODS Tumors from pediatric patients with high-risk, extracranial solid malignancies were sequenced with a targeted panel of cancer-associated genes. Later, germline DNA was analyzed for a subset of these genes. We performed a post hoc analysis to identify how an integrated analysis of tumor and germline data would improve clinical interpretation. RESULTS One hundred sixty participants with both tumor-only and germline sequencing reports were eligible for this analysis. Germline sequencing identified 38 pathogenic or likely pathogenic variants among 35 (22%) patients. Twenty-five (66%) of these were included in the tumor sequencing report. The remaining germline pathogenic or likely pathogenic variants were single-nucleotide variants filtered out of tumor-only analysis because of population frequency or copy-number variation masked by additional copy-number changes in the tumor. In tumor-only sequencing, 308 of 434 (71%) single-nucleotide variants reported were present in the germline, including 31% with suggested clinical utility. Finally, we provide further evidence that the variant allele fraction from tumor-only sequencing is insufficient to differentiate somatic from germline events. CONCLUSION A paired approach to analyzing tumor and germline sequencing data would be expected to improve the efficiency and accuracy of distinguishing somatic mutations and germline variants, thereby facilitating the process of variant curation and therapeutic interpretation for somatic reports, as well as the identification of variants associated with germline cancer predisposition.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 6 ( 2022-11)
    Abstract: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations ( FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions ( FGFR3:: TACC3 [n = 3], FGFR1:: TACC1 [n = 1] , FGFR1:: EBF2 [n = 1], FGFR1:: CLIP2 [n = 1] , and FGFR2:: CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3104-3104
    Abstract: The GAIN iCat2 Project is a collaboration between Dana-Farber/Boston Children's Cancer and Blood Disorder Center and eleven pediatric oncology centers across the United States to sequence relapsed, metastatic, difficult-to-diagnose, and high-risk extracranial solid tumors from 825 patients. The goals are to gain a better understanding of the genomic events in pediatric cancers and determine the clinical impact of matched targeted therapy. Tumor samples are sequenced on one of four gene panels performed in CLIA certified, CAP accredited laboratories, most often utilizing OncoPanel at the Center for Advanced Molecular Diagnostics, Brigham Women’s Hospital. This panel assesses SNVs and CNVs in 447 cancer-associated genes and interrogates intronic regions of 60 genes frequently involved in oncogenic translocation. For undifferentiated sarcomas and tumors in which oncogenic drivers are not identified by the gene panel, whole exome sequencing or RNA sequencing for fusion detection may be done. Interpretation of genomic results, including potential implications for diagnosis and hereditary risks, as well as assessment of possible matched targeted therapies and suitable trials are summarized in a report to the primary oncology provider. An interim analysis of tumors from the first 275 patients enrolled who have OncoPanel results was performed to assess genomic alterations most prevalent in this group of pediatric cancers. 50% (137/275) have structural alterations in their tumors with over half of these (74/137) harboring an oncogenic fusion that is the main, or only identified, driver of the cancer. These include fusions pathognomonic for diseases such as Ewing sarcoma, alveolar rhabdomyosarcoma, synovial sarcoma, desmoplastic small round cell tumors, mesenchymal chondrosarcoma, low grade fibromyxoid sarcoma, and NUT midline carcinoma. Other cases showed recurrent disruption of key tumor suppressors, such as TP53 intron 1 translocations in osteosarcoma. Lastly, more generalized, key, cancer-driving fusions were seen with rearrangements involving BRAF, NOTCH, and NTRK. In addition to aiding in diagnosis, identification of fusions has led to targeted therapy recommendations for many patients. SNVs and CNVs also helped clarify diagnoses, especially in the case of DICER1 and SMARCB1 alterations, and identified potential targeted therapies to consider for relapsed patients. Although patient recruitment is ongoing, this study shows promise for advancing our understanding and treatment of pediatric cancers and highlights the critical importance of incorporating techniques for fusion detection in tumor profiling. Citation Format: Laura B. Corson, Alma Imamovic-Tuco, Gianna R. Strand, Deirdre Reidy, Duong Doan, Mark A. Applebaum, Rochelle Bagatell, Brian D. Crompton, Steven G. DuBois, Julia L. Glade Bender, AeRang Kim, Theodore W. Laetsch, Lobin A. Lee, Neal I. Lindeman, Laura E. MacConaill, Margaret E. Macy, Luke Maese, Seth Pinches, Navin Pinto, Amit J. Sabnis, Eliezer M. Van Allen, Susan I. Vear, Daniel A. Weiser, Catherine M. Clinton, Katherine A. Janeway, Alanna J. Church. A high prevalence of chromosomal translocations as drivers in high-risk pediatric solid cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3104.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. A28-A28
    Abstract: Background: Gene variants with potential therapeutic significance have been reported in 30-60% of childhood malignancies. The 12-institution Genomic Assessment Informs Novel therapy (GAIN) consortium is conducting the individualized cancer therapy 2 (iCat2) study (NCT02520713) with the objective of evaluating the impact of tumor profiling on outcome. We provide an interim report on patients enrolled on the ongoing GAIN/iCat2 study. Methods and Objectives: Patients are eligible if they have a high-risk, recurrent/refractory (RR), or difficult-to-diagnose extracranial solid tumor diagnosed at ≤30 years and adequate sample available for sequencing. A next-generation targeted panel assay is performed. Results are returned with a GAIN report containing clinical interpretation, including an individualized cancer therapy (iCat) recommendation if there is evidence supporting a link between an identified variant and response to molecularly targeted therapy. iCat recommendations are tiered from 1 to 5 based on the level of clinical and preclinical support, with tier 1 being the highest and tier 5 the lowest. Potential extraordinary responders are selected for further review based on having treatment duration of ≥1 year for chemotherapy or ≥4 months or a partial response for targeted therapy. Results: 388 eligible patients were enrolled by 1/1/2019 with the most common diagnoses being osteosarcoma, Ewing sarcoma, and rhabdomyosarcoma. 366 patients (94%) have had at least one successful sequencing result, with 349 having molecular and GAIN reports suitable for inclusion in this analysis. 68% of patients (237/349) have received iCat recommendations, with 41% (143/349) having the highest tier of 1-2 and 27% (94/349) having a highest tier of 3-5. Common genes for which tier 1-2 iCat recommendations were made include TP53 (15%), SMARCB1 (4%), PIK3CA (3%), CDK4 (2%), and KRAS (2%). Common alterations for which tier 3-5 recommendations were made include EWSR1 fusions (12%), MYC/MYCN amplifications (8%), and CDKN2A deletions (7%). Of 170 RR patients with treatment follow-up data entered as of June 2019, 15% (25/170) have received matched targeted therapy. Six of these (24%) are considered extraordinary responders. Of note, extraordinary responses were also seen with some second-line chemotherapy and multitargeted kinase inhibitors. Conclusions: The proportion of patients with clinically significant gene variants is higher in this study than in some previous reports. Providing an iCat recommendation for alterations in genes such as TP53 where evidence is mixed, increased availability of molecularly targeted therapy trials, and more evidence may all be responsible for this increased rate. Reassessment of iCat recommendation tiers based on current evidence is ongoing. Extraordinary responses occur in a subset of children with extracranial solid malignancies who receive matched targeted therapy. Study enrollment is ongoing with further assessments of the impact of tumor profiling on outcome planned. Citation Format: Laura B. Corson, Alanna J. Church, Deirdre Reidy, Pei-Chi Kao, Wenjun Kang, Navin Pinto, Luke Maese, Theodore W. Laetsch, AeRang Kim, Susan I. Vear, Margaret E. Macy, Mark A. Applebaum, Lobin A. Lee, Duong Doan, R. Seth Pinches, Seong Choi, Suzanne J. Forrest, Catherine M. Clinton, Brian D. Crompton, Laura E. MacConaill, Samuel L. Volchenboum, Neal I. Lindeman, Steven G. DuBois, Wendy B. London, Katherine A. Janeway. Targeted sequencing in 388 patients with high-risk or recurrent/refractory pediatric extracranial solid malignancies: An interim report from the GAIN Consortium/iCat2 Study [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr A28.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. A59-A59
    Abstract: Introduction: Molecular techniques have been incorporated into the diagnostic algorithms for many specific tumors, but the diagnostic role of next-generation sequencing has not been described at a population level. We report diagnostically relevant alterations identified by large-scale sequencing in a prospective cohort of pediatric solid tumors. Methods and Objectives: Patients are eligible for the GAIN / iCat2 study if they have a high-risk, recurrent, or refractory extracranial solid tumor diagnosed at age 30 or less and have an adequate sample for sequencing available. After informed consent, tumor was sequenced using a next-generation sequencing assay that evaluates 447 genes and includes data about sequence variants, copy number alterations, and, in selected genes, translocations. Some cases received additional sequencing via RNASeq or targeted RNA sequencing for further evaluation of fusions. Diagnostic relevance was determined according to AMP/ASCO/CAP standards and guidelines for the reporting of sequence variants in cancer. Results: 349 patients were enrolled as of December 31, 2018, and had tumor tissue successfully sequenced. These patients represent 60 unique diagnoses according to the WHO ICD-O classification. The most common single diagnoses were osteosarcoma (n=64), Ewing sarcoma (n=44), and alveolar rhabdomyosarcoma (n=32). For 349 patients, 184 (53%) had one or more genetic alterations that were diagnostically relevant, of which 159 (86%) were structural variants, 16 (8%) were sequence variants, and 9 (5%) were copy number variations. Alterations of high diagnostic relevance include CIC-DUX4 fusions in sarcoma (n=8), TP53 intron 1 rearrangements in osteosarcoma (n=26), DICER1 sequence variants in various tumors (n=7), and BCOR internal tandem duplications in clear-cell sarcoma of kidney and primitive myxoid mesenchymal tumor of infancy (n=3). Conclusions: Diagnostically relevant alterations were identified in over half of pediatric solid tumor patients evaluated. Gene fusions are particularly prevalent. These results support a role for sequencing that includes robust fusion assessment to inform diagnosis in patients with pediatric solid tumors. Citation Format: Alanna J. Church, Laura B. Corson, Alma Imamovic-Tuco, Gianna R. Strand, Dierdre Reidy, Duong Doan, Robert S. Pinches, Mark A. Applebaum, Rochelle Bagatell, Brian D. Crompton, Steven G. DuBois, Julia L. Glade Bender, Theodore W. Laetsch, Lobin A. Lee, Neal I. Lindeman, Marian H. Harris, Margaret E. Macy, Luke Maese, Navin Pinto, Amit J. Sabnis, Eliezer M. Van Allen, Susan I. Vear, Daniel A. Weiser, Catherine M. Clinton, Katherine A. Janeway. Sequencing identifies diagnostically relevant alterations in pediatric solid tumor patients [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr A59.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 3 ( 2019-12), p. 1-9
    Abstract: The yield of comprehensive genomic profiling in recruiting patients to molecular-based trials designed for small subgroups has not been fully evaluated. We evaluated the likelihood of enrollment in a clinical trial that required the identification of a specific genomic change based on our institute-wide genomic tumor profiling. PATIENTS AND METHODS Using genomic profiling from archived tissue samples derived from patients with metastatic breast cancer treated between 2011 and 2017, we assessed the impact of systematic genomic characterization on enrollment in an ongoing phase II trial (ClinicalTrials.gov identifier: NCT01670877 ). Our primary aim was to describe the proportion of patients with a qualifying ERBB2 mutation identified by our institutional genomic panel (OncoMap or OncoPanel) who enrolled in the trial. Secondary objectives included median time from testing result to trial registration, description of the spectrum of ERBB2 mutations, and survival. Associations were calculated using Fisher’s exact test. RESULTS We identified a total of 1,045 patients with metastatic breast cancer without ERBB2 amplification who had available genomic testing results. Of these, 42 patients were found to have ERBB2 mutation and 19 patients (1.8%) were eligible for the trial on the basis of the presence of an activating mutation, 18 of which were identified by OncoPanel testing. Fifty-eight percent of potentially eligible patients were approached, and 33.3% of eligible patients enrolled in the trial guided exclusively by OncoPanel testing. CONCLUSION More than one half of eligible patients were approached for trial participation and, significantly, one third of those were enrolled in NCT01670877. Our data illustrate the ability to enroll patients in trials of rare subsets in routine clinical practice and highlight the need for these broadly based approaches to effectively support the success of these studies.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...