GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Lindeman, Neal I.  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2991-2991
    Abstract: Identification of structural gene rearrangements is vital for cancer patients as these events can provide definitive diagnoses, prognostic value, and influence the course of treatment. While FISH, karyotype analysis and aCGH array have traditionally been used to identify and confirm the presence of structural variants, the advent of next generation sequencing has enabled genetic testing including detection of multiple structural variants (SVs) from genomic DNA. To this end, we have developed and validated Oncopanel, a cancer-specific targeted next generation sequencing (NGS) assay designed to detect SNVs, indels, and copy number alterations across 300 genes, and 35 clinically actionable or informative SVs. Each rearrangement was specifically targeted by baiting genomic locations frequently identified to contain breakpoints reported in the literature and publicly available databases. Using BreaKmer, an internally developed SV detection tool (Nucleic Acids Res. 2014 Nov 26, doi: 10.1093/nar/gku1211), rearrangements, including the exact breakpoint coordinates and the genes involved in or adjacent to the breakpoint(s), were identified. Here we examine the utility of Oncopanel using genomic DNA to identify structural variants. We report the results of 3,291 cancer patients tested in our personalized cancer medicine program (Profile), a joint venture between Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Boston Children's Hospital. As compared to conventional cytogenetics, FISH analysis, and molecular detection by PCR methods, Oncopanel's overall sensitivity and specificity for SVs was 81.4% and 100%, respectively. Most discordant results were identified in (1) tumors with SVs involving the IGH enhancer regions (60% of discordant results), or (2) in samples with & lt; 20% tumor (25% of discordant results). Several SVs involving the IGH enhancer regions were missed likely due to lack of Oncopanel coverage. Oncopanel was designed to target a finite sequence pool, but due to IGH enhancer region's large size (1.2Mb), only a small portion of this region was specifically interrogated. Inclusion of all possible IGH enhancer sequences would have hampered the effectiveness of SNV, indel and copy number alteration detection for other cancer critical genes. Discrepant Oncopanel and cytogenetic results were also observed in samples with low tumor purity likely due to masking of variant sequences by stromal contamination. In conclusion, we find that Oncopanel has utility to detect structural variants with a sensitivity of 92%, barring detection of rearrangements involving IGH, and a specificity of 100%. Based on the baiting strategy, detection of many rearrangements can also be interrogated in parallel with SNV, indel and CNV detection resulting in reduced sample input requirements and the inclusion of precise information regarding the breakpoints and the class of rearrangement identified. Citation Format: Elizabeth P. Garcia, Azra H. Ligon, Ryan P. Abo, Paola S. Dal Cin, Stanislawa Weremowicz, Priyanka Shivdasani, Phani K. Davineni, Dimity L. Zepf, Matthew D. Ducar, Paul Van Hummelen, Yonghui Jia, Frank C. Kuo, Lynette M. Sholl, Laura E. MacConaill, Neal I. Lindeman. Detection of gene rearrangements using OncoPanel: a targeted next-generation sequencing assay. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2991. doi:10.1158/1538-7445.AM2015-2991
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 4666-4666
    Abstract: Identification of predictive and prognostic biomarkers is central to clinical oncology. Use of targeted next generation sequencing (NGS) is increasing in molecular diagnostics labs, however the feasibility and impact of its routine application across all tumor types is largely untested. We launched an institution-wide effort to generate targeted NGS data (Oncopanel) for invasive tumors of all consenting patients. We hypothesized that this approach could replace traditional targeted testing, generate robust data on copy number alterations and structural variants, and provide novel patient-specific observations to facilitate clinical trial enrollment. Illumina NGS was performed on libraries prepared with Agilent SureSelect custom-designed hybrid capture of 4430 exons from 275 genes plus selected introns of 30 genes. Results were analyzed by an internally-developed computational pipeline for mutations, small insertions/deletions, copy number variation and rearrangements. Variants were characterized according to predictive, prognostic, or diagnostic actionability. Data is available for the first 4291 cases sequenced. Oncopanel succeeded in 96% of specimens with adequate DNA. In a subset analysis performed on the first 1000 cases, assay success ranged from 83-100% according to tumor type; breast carcinoma was most prone to failure (p & lt;0.0001). Median number of mutations per case was 8 (range 0-205) and was lowest in endocrine malignancies and highest in skin malignancies. Three percent of tumors were hypermutated with mutational signatures revealing distinct pathogenic underpinnings, including prior temozolomide therapy, microsatellite instability, and UV exposure. Compared to clinical testing, Oncopanel showed 100% accuracy for detection of KRAS and BRAF point mutations in colon adenocarcinoma, EGFR exon 19 deletion mutations in lung adenocarcinoma, and for EGFR amplification in glioblastoma. Oncopanel was 97.5% sensitive and 87.5% specific for 1p19q deletion as compared to aCGH or FISH and was 80% sensitive and 100% specific as compared to ALK FISH and additionally detected 2 ALK rearranged tumors for which FISH failed. In the overall cohort, 26% of patients had an actionable variant (most commonly KRAS) and 39% had alterations with implications for clinical trial enrollment (most commonly in PI3K/PTEN/AKT pathway). TP53 was the most commonly altered gene overall and the most likely to be co-mutated with oncogenic drivers. High level amplifications were most common for EGFR, MDM2, CDK4, ERBB2, MYC, and CCND1. Two-copy deletions were most common for CDKN2A/B, followed by TP53 and PTEN. In several cases, Oncopanel data uncovered alterations that informed diagnosis and treatment of difficult-to-classify tumors. These efforts demonstrate that high quality, high throughput NGS data can be generated prospectively on an institutional level, thereby informing disease course and therapeutic options at an unprecedented scale. Citation Format: Lynette M. Sholl, Elizabeth Garcia, Yonghui Jia, Matthew Ducar, Bernard Fendler, Priyanka Shivdasani, Frank C. Kuo, Azra H. Ligon, Barrett J. Rollins, Neal I. Lindeman, Laura E. MacConaill. Revolutionizing clinical care using prospective, institution-wide tumor sequencing. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4666. doi:10.1158/1538-7445.AM2015-4666
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...