GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Tissue and Cell Vol. 48, No. 5 ( 2016-10), p. 511-515
    In: Tissue and Cell, Elsevier BV, Vol. 48, No. 5 ( 2016-10), p. 511-515
    Type of Medium: Online Resource
    ISSN: 0040-8166
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2002599-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2022-9-2)
    Abstract: Background: Linking genotypic changes to phenotypic traits based on machine learning methods has various challenges. In this study, we developed a workflow based on bioinformatics and machine learning methods using transcriptomic data for sepsis obtained at the first clinical presentation for predicting the risk of sepsis. By combining bioinformatics with machine learning methods, we have attempted to overcome current challenges in predicting disease risk using transcriptomic data. Methods: High-throughput sequencing transcriptomic data processing and gene annotation were performed using R software. Machine learning models were constructed, and model performance was evaluated by machine learning methods in Python. The models were visualized and interpreted using the Shapley Additive explanation (SHAP) method. Results: Based on the preset parameters and using recursive feature elimination implemented via machine learning, the top 10 optimal genes were screened for the establishment of the machine learning models. In a comparison of model performance, CatBoost was selected as the optimal model. We explored the significance of each gene in the model and the interaction between each gene through SHAP analysis. Conclusion: The combination of CatBoost and SHAP may serve as the best-performing machine learning model for predicting transcriptomic and sepsis risks. The workflow outlined may provide a new approach and direction in exploring the mechanisms associated with genes and sepsis risk.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: BMC Infectious Diseases, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2023-02-06)
    Abstract: Sepsis has the characteristics of high incidence, high mortality of ICU patients. Early assessment of disease severity and risk stratification of death in patients with sepsis, and further targeted intervention are very important. The purpose of this study was to develop machine learning models based on sequential organ failure assessment (SOFA) components to early predict in-hospital mortality in ICU patients with sepsis and evaluate model performance. Methods Patients admitted to ICU with sepsis diagnosis were extracted from MIMIC-IV database for retrospective analysis, and were randomly divided into training set and test set in accordance with 2:1. Six variables were included in this study, all of which were from the scores of 6 organ systems in SOFA score. The machine learning model was trained in the training set and evaluated in the validation set. Six machine learning methods including linear regression analysis, least absolute shrinkage and selection operator (LASSO), Logistic regression analysis (LR), Gaussian Naive Bayes (GNB) and support vector machines (SVM) were used to construct the death risk prediction models, and the accuracy, area under the receiver operating characteristic curve (AUROC), Decision Curve Analysis (DCA) and K-fold cross-validation were used to evaluate the prediction performance of developed models. Result A total of 23,889 patients with sepsis were enrolled, of whom 3659 died in hospital. Three feature variables including renal system score, central nervous system score and cardio vascular system score were used to establish prediction models. The accuracy of the LR, GNB, SVM were 0.851, 0.844 and 0.862, respectively, which were better than linear regression analysis (0.123) and LASSO (0.130). The AUROCs of LR, GNB and SVM were 0.76, 0.76 and 0.67, respectively. K-fold cross validation showed that the average AUROCs of LR, GNB and SVM were 0.757 ± 0.005, 0.762 ± 0.006, 0.630 ± 0.013, respectively. For the probability threshold of 5–50%, LY and GNB models both showed positive net benefits. Conclusion The two machine learning-based models (LR and GNB models) based on SOFA components can be used to predict in-hospital mortality of septic patients admitted to ICU.
    Type of Medium: Online Resource
    ISSN: 1471-2334
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2041550-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Emergency Medicine International, Hindawi Limited, Vol. 2019 ( 2019-11-11), p. 1-6
    Abstract: Introduction . Up to one-third of patients admitted to the ICU are in circulatory shock, and early recognition of the condition is vital if subsequent tissue injuries are to be avoided. We would like to know what role the arterial lactic acid, inferior vena cava variability, and CVP (central venous pressure) play in the early stages of shock. Methods . This is a retrospective study of patients who underwent surgical resuscitation in the Department of Critical Care Medicine. We use the ROC (receiver-operating characteristic) curve to evaluate the significance of each indicator in the diagnosis. For correlation analysis between groups, we first use linear regression for processing and then analysis with correlation. Results . The ROC curve analysis shows that the area under the curve of the lactic acid group was 0.9272, the area under the curve of the inferior vena cava variability group was 0.8652, and the area under the curve of the CVP group was 0.633. Correlation analysis shows that the inferior vena cava variability and arterial lactic acid Pearson’s r  = 0.2863 and CVP and arterial lactic acid Pearson’s r  = 0.0729. Conclusion . The diagnostic value of arterial lactate is still very high and can still be used as an early warning indicator to help clinicians be alert to the microcirculatory disorders that have emerged quietly. The degree of inferior vena cava variability is linearly related to arterial lactic acid and can also be used as a reference indicator for early evaluation of shock. The diagnostic value of CVP is obviously lower.
    Type of Medium: Online Resource
    ISSN: 2090-2840 , 2090-2859
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2596429-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...