GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (2)
  • Lin, Di  (2)
  • 2015-2019  (2)
Material
Publisher
  • AIP Publishing  (2)
Person/Organisation
Language
Years
  • 2015-2019  (2)
Year
Subjects(RVK)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 107, No. 17 ( 2015-10-26)
    Abstract: We present a high performance nonlinear piezoelectric energy harvester constituted by a cantilever with symmetrically middle-stops and double-clamped piezoelectric plates based on piezoelectric single crystal 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3. Electrical properties of the device under different excitation frequencies, accelerations, and load resistances are studied systematically. Under a low acceleration of 3 m/s2 (0.3 g), a peak voltage of 26.2 V and a maximum normalized power of 25.6 mW/g2 were obtained across a matching impedance of 600 kΩ with favorable bandwidths. The low excitation acceleration and excellent performances indicate that the device can be a promising candidate for energy harvesting in low-power electronics and wireless sensors.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Applied Physics Letters, AIP Publishing, Vol. 110, No. 10 ( 2017-03-06)
    Abstract: We present a high performance flexible piezoelectric energy harvester constituted by a Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 (PIN-PMN-PT) single crystal/epoxy 2-2 composite flake, a polyethylene terephthalate (PET) substrate, and a PET cover, which is capable of harvesting energy from biomechanical movements. Electrical properties of the device under different epoxy volume fractions, load resistances, and strains are studied systematically. Both theoretical and experimental results show that the plastic-composite-plastic structure contributes to the flexibility of the device, and a high performance bulk PIN-PMN-PT single crystal (a thickness of 50 μm) results in its high electrical output. At a low excitation frequency of 4.2 Hz, the optimal flexible energy harvester (with ve = 21%) can generate a peak voltage of 12.9 V and a maximum power density of 0.28 mW/cm3 under a bending radius of 10.5 mm, and maintain its performance after 40 000 bending-unbending cycles. High flexibility and excellent electrical output at low operational frequency demonstrate the promise of the device in biomechanical motion energy harvesting for wireless and portable low-power electronics.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...