GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (17)
  • Lin, Chin-Sheng  (17)
  • 1
    In: Biomedicines, MDPI AG, Vol. 8, No. 11 ( 2020-11-13), p. 499-
    Abstract: Statins constitute the mainstay treatment for atherosclerotic cardiovascular disease, which is associated with the risk of new-onset diabetes mellitus (NODM). However, the effects of individual statins on the risk of NODM remain unclear. We recruited 48,941 patients taking one of the three interested statins in a tertiary hospital between 2006 and 2018. Among them, 8337 non-diabetic patients taking moderate-intensity statins (2 mg/day pitavastatin, 10 mg/day atorvastatin, and 10 mg/day rosuvastatin) were included. The pitavastatin group had a higher probability of being NODM-free than the atorvastatin and rosuvastatin groups during the 4-year follow-up (log-rank test: p = 0.038). A subgroup analysis revealed that rosuvastatin had a significantly higher risk of NODM than pitavastatin among patients with coronary artery disease (CAD) (adjusted HR [aHR] , 1.47, 95% confidence interval [CI], 1.05–2.05, p = 0.025), hypertension (aHR, 1.26, 95% CI, 1.00–1.59, p = 0.047), or chronic obstructive pulmonary disease (COPD) (aHR, 1.74, 95% CI, 1.02–2.94, p = 0.04). We concluded that compared with rosuvastatin, reduced diabetogenic effects of pitavastatin were observed among patients treated with moderate-intensity statin who had hypertension, COPD, or CAD. Additional studies are required to prove the effects of different statins on the risk of NODM.
    Type of Medium: Online Resource
    ISSN: 2227-9059
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2720867-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  International Journal of Environmental Research and Public Health Vol. 18, No. 7 ( 2021-04-06), p. 3839-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 7 ( 2021-04-06), p. 3839-
    Abstract: Although digoxin is important in heart rate control, the utilization of digoxin is declining due to its narrow therapeutic window. Misdiagnosis or delayed diagnosis of digoxin toxicity is common due to the lack of awareness and the time-consuming laboratory work that is involved. Electrocardiography (ECG) may be able to detect potential digoxin toxicity based on characteristic presentations. Our study attempted to develop a deep learning model to detect digoxin toxicity based on ECG manifestations. This study included 61 ECGs from patients with digoxin toxicity and 177,066 ECGs from patients in the emergency room from November 2011 to February 2019. The deep learning algorithm was trained using approximately 80% of ECGs. The other 20% of ECGs were used to validate the performance of the Artificial Intelligence (AI) system and to conduct a human-machine competition. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were used to evaluate the performance of ECG interpretation between humans and our deep learning system. The AUCs of our deep learning system for identifying digoxin toxicity were 0.912 and 0.929 in the validation cohort and the human-machine competition, respectively, which reached 84.6% of sensitivity and 94.6% of specificity. Interestingly, the deep learning system using only lead I (AUC = 0.960) was not worse than using complete 12 leads (0.912). Stratified analysis showed that our deep learning system was more applicable to patients with heart failure (HF) and without atrial fibrillation (AF) than those without HF and with AF. Our ECG-based deep learning system provides a high-accuracy, economical, rapid, and accessible way to detect digoxin toxicity, which can be applied as a promising decision supportive system for diagnosing digoxin toxicity in clinical practice.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 17, No. 9 ( 2016-08-24), p. 1394-
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2016
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 11 ( 2021-11-04), p. 1149-
    Abstract: (1) Background: While an artificial intelligence (AI)-based, cardiologist-level, deep-learning model for detecting acute myocardial infarction (AMI), based on a 12-lead electrocardiogram (ECG), has been established to have extraordinary capabilities, its real-world performance and clinical applications are currently unknown. (2) Methods and Results: To set up an artificial intelligence-based alarm strategy (AI-S) for detecting AMI, we assembled a strategy development cohort including 25,002 visits from August 2019 to April 2020 and a prospective validation cohort including 14,296 visits from May to August 2020 at an emergency department. The components of AI-S consisted of chest pain symptoms, a 12-lead ECG, and high-sensitivity troponin I. The primary endpoint was to assess the performance of AI-S in the prospective validation cohort by evaluating F-measure, precision, and recall. The secondary endpoint was to evaluate the impact on door-to-balloon (DtoB) time before and after AI-S implementation in STEMI patients treated with primary percutaneous coronary intervention (PPCI). Patients with STEMI were alerted precisely by AI-S (F-measure = 0.932, precision of 93.2%, recall of 93.2%). Strikingly, in comparison with pre-AI-S (N = 57) and post-AI-S (N = 32) implantation in STEMI protocol, the median ECG-to-cardiac catheterization laboratory activation (EtoCCLA) time was significantly reduced from 6.0 (IQR, 5.0–8.0 min) to 4.0 min (IQR, 3.0–5.0 min) (p 〈 0.01). The median DtoB time was shortened from 69 (IQR, 61.0–82.0 min) to 61 min (IQR, 56.8–73.2 min) (p = 0.037). (3) Conclusions: AI-S offers front-line physicians a timely and reliable diagnostic decision-support system, thereby significantly reducing EtoCCLA and DtoB time, and facilitating the PPCI process. Nevertheless, large-scale, multi-institute, prospective, or randomized control studies are necessary to further confirm its real-world performance.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Personalized Medicine, MDPI AG, Vol. 12, No. 2 ( 2022-02-19), p. 315-
    Abstract: Background: Left atrium enlargement (LAE) can be used as a predictor of future cardiovascular diseases, including hypertension (HTN) and atrial fibrillation (Afib). Typical electrocardiogram (ECG) changes have been reported in patients with LAE. This study developed a deep learning model (DLM)-enabled ECG system to identify patients with LAE. Method: Patients who had ECG records with corresponding echocardiography (ECHO) were included. There were 101,077 ECGs, 20,510 ECGs, 7611 ECGs, and 11,753 ECGs in the development, tuning, internal validation, and external validation sets, respectively. We evaluated the performance of a DLM-enabled ECG for diagnosing LAE and explored the prognostic value of ECG-LAE for new-onset HTN, new-onset stroke (STK), new-onset mitral regurgitation (MR), and new-onset Afib. Results: The DLM-enabled ECG achieved AUCs of 0.8127/0.8176 for diagnosing mild LAE, 0.8587/0.8688 for diagnosing moderate LAE, and 0.8899/0.8990 for diagnosing severe LAE in the internal/external validation sets. Notably, ECG-LAE had higher prognostic value compared to ECHO-LAE, which had C-indices of 0.711/0.714 compared to 0.695/0.692 for new-onset HTN, 0.676/0.688 compared to 0.663/0.677 for new-onset STK, 0.696/0.695 compared to 0.676/0.673 for new-onset MR, and 0.800/0.806 compared to 0.786/0.760 for new-onset Afib in internal/external validation sets, respectively. Conclusions: A DLM-enabled ECG could be considered as a LAE screening tool and provide better prognostic information for related cardiovascular diseases.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Journal of Personalized Medicine Vol. 12, No. 7 ( 2022-07-15), p. 1150-
    In: Journal of Personalized Medicine, MDPI AG, Vol. 12, No. 7 ( 2022-07-15), p. 1150-
    Abstract: (1) Background: Acute pericarditis is often confused with ST-segment elevation myocardial infarction (STEMI) among patients presenting with acute chest pain in the emergency department (ED). Since a deep learning model (DLM) has been validated to accurately identify STEMI cases via 12-lead electrocardiogram (ECG), this study aimed to develop another DLM for the detection of acute pericarditis in the ED. (2) Methods: This study included 128 ECGs from patients with acute pericarditis and 66,633 ECGs from patients visiting the ED between 1 January 2010 and 31 December 2020. The ECGs were randomly allocated based on patients to the training, tuning, and validation sets, at a 3:1:1 ratio. We used raw ECG signals to train a pericarditis-DLM and used traditional ECG features to train a machine learning model. A human–machine competition was conducted using a subset of the validation set, and the performance of the Philips automatic algorithm was also compared. STEMI cases in the validation set were extracted to analyze the DLM ability of differential diagnosis between acute pericarditis and STEMI using ECG. We also followed the hospitalization events in non-pericarditis cases to explore the meaning of false-positive predictions. (3) Results: The pericarditis-DLM exceeded the performance of all participating human experts and algorithms based on traditional ECG features in the human–machine competition. In the validation set, the pericarditis-DLM could detect acute pericarditis with an area under the receiver operating characteristic curve (AUC) of 0.954, a sensitivity of 78.9%, and a specificity of 97.7%. However, our pericarditis-DLM also misinterpreted 10.2% of STEMI ECGs as pericarditis cases. Therefore, we generated an integrating strategy combining pericarditis-DLM and a previously developed STEMI-DLM, which provided a sensitivity of 73.7% and specificity of 99.4%, to identify acute pericarditis in patients with chest pains. Compared to the true-negative cases, patients with false-positive results using this strategy were associated with higher risk of hospitalization within 3 days due to cardiac disorders (hazard ratio (HR): 8.09; 95% confidence interval (CI): 3.99 to 16.39). (4) Conclusions: The AI-enhanced algorithm may be a powerful tool to assist clinicians in the early detection of acute pericarditis and differentiate it from STEMI using 12-lead ECGs.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 8 ( 2021-07-27), p. 725-
    Abstract: Background: glycated hemoglobin (HbA1c) provides information on diabetes mellitus (DM) management. Electrocardiography (ECG) is a noninvasive test of cardiac activity that has been determined to be related to DM and its complications. This study developed a deep learning model (DLM) to estimate HbA1c via ECG. Methods: there were 104,823 ECGs with corresponding HbA1c or fasting glucose which were utilized to train a DLM for calculating ECG-HbA1c. Next, 1539 cases from outpatient departments and health examination centers provided 2190 ECGs for initial validation, and another 3293 cases with their first ECGs were employed to analyze its contributions to DM management. The primary analysis was used to distinguish patients with and without mild to severe DM, and the secondary analysis was to explore the predictive value of ECG-HbA1c for future complications, which included all-cause mortality, new-onset chronic kidney disease (CKD), and new-onset heart failure (HF). Results: we used a gender/age-matching strategy to train a DLM to achieve the best AUCs of 0.8255 with a sensitivity of 71.9% and specificity of 77.7% in a follow-up cohort with correlation of 0.496 and mean absolute errors of 1.230. The stratified analysis shows that DM presented in patients with fewer comorbidities was significantly more likely to be detected by ECG-HbA1c. Patients with higher ECG-HbA1c under the same Lab-HbA1c exhibited worse physical conditions. Of interest, ECG-HbA1c may contribute to the mortality (gender/age adjusted hazard ratio (HR): 1.53, 95% conference interval (CI): 1.08–2.17), new-onset CKD (HR: 1.56, 95% CI: 1.30–1.87), and new-onset HF (HR: 1.51, 95% CI: 1.13–2.01) independently of Lab-HbA1c. An additional impact of ECG-HbA1c on the risk of all-cause mortality (C-index: 0.831 to 0.835, p 〈 0.05), new-onset CKD (C-index: 0.735 to 0.745, p 〈 0.01), and new-onset HF (C-index: 0.793 to 0.796, p 〈 0.05) were observed in full adjustment models. Conclusion: the ECG-HbA1c could be considered as a novel biomarker for screening DM and predicting the progression of DM and its complications.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Diagnostics, MDPI AG, Vol. 13, No. 17 ( 2023-08-22), p. 2723-
    Abstract: BACKGROUND: The B-type natriuretic peptide (BNP) and N-terminal pro-brain natriuretic peptide (pBNP) are predictors of cardiovascular morbidity and mortality. Since the artificial intelligence (AI)-enabled electrocardiogram (ECG) system is widely used in the management of many cardiovascular diseases (CVDs), patients requiring intensive monitoring may benefit from an AI-ECG with BNP/pBNP predictions. This study aimed to develop an AI-ECG to predict BNP/pBNP and compare their values for future mortality. METHODS: The development, tuning, internal validation, and external validation sets included 47,709, 16,249, 4001, and 6042 ECGs, respectively. Deep learning models (DLMs) were trained using a development set for estimating ECG-based BNP/pBNP (ECG-BNP/ECG-pBNP), and the tuning set was used to guide the training process. The ECGs in internal and external validation sets belonging to nonrepeating patients were used to validate the DLMs. We also followed-up all-cause mortality to explore the prognostic value. RESULTS: The DLMs accurately distinguished mild (≥500 pg/mL) and severe (≥1000 pg/mL) an abnormal BNP/pBNP with AUCs of ≥0.85 in the internal and external validation sets, which provided sensitivities of 68.0–85.0% and specificities of 77.9–86.2%. In continuous predictions, the Pearson correlation coefficient between ECG-BNP and ECG-pBNP was 0.93, and they were both associated with similar ECG features, such as the T wave axis and correct QT interval. ECG-pBNP provided a higher all-cause mortality predictive value than ECG-BNP. CONCLUSIONS: The AI-ECG can accurately estimate BNP/pBNP and may be useful for monitoring the risk of CVDs. Moreover, ECG-pBNP may be a better indicator to manage the risk of future mortality.
    Type of Medium: Online Resource
    ISSN: 2075-4418
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662336-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Personalized Medicine, MDPI AG, Vol. 12, No. 3 ( 2022-03-13), p. 455-
    Abstract: BACKGROUND: The ejection fraction (EF) provides critical information about heart failure (HF) and its management. Electrocardiography (ECG) is a noninvasive screening tool for cardiac electrophysiological activities that has been used to detect patients with low EF based on a deep learning model (DLM) trained via large amounts of data. However, no studies have widely investigated its clinical impacts. OBJECTIVE: This study developed a DLM to estimate EF via ECG (ECG-EF). We further investigated the relationship between ECG-EF and echo-based EF (ECHO-EF) and explored their contributions to future cardiovascular adverse events. METHODS: There were 57,206 ECGs with corresponding echocardiograms used to train our DLM. We compared a series of training strategies and selected the best DLM. The architecture of the DLM was based on ECG12Net, developed previously. Next, 10,762 ECGs were used for validation, and another 20,629 ECGs were employed to conduct the accuracy test. The changes between ECG-EF and ECHO-EF were evaluated. The primary follow-up adverse events included future ECHO-EF changes and major adverse cardiovascular events (MACEs). RESULTS: The sex-/age-matching strategy-trained DLM achieved the best area under the curve (AUC) of 0.9472 with a sensitivity of 86.9% and specificity of 89.6% in the follow-up cohort, with a correlation of 0.603 and a mean absolute error of 7.436. In patients with accurate prediction (initial difference 〈 10%), the change traces of ECG-EF and ECHO-EF were more consistent (R-square = 0.351) than in all patients (R-square = 0.115). Patients with lower ECG-EF (≤35%) exhibited a greater risk of cardiovascular (CV) complications, delayed ECHO-EF recovery, and earlier ECHO-EF deterioration than patients with normal ECG-EF ( 〉 50%). Importantly, ECG-EF demonstrated an independent impact on MACEs and all CV adverse outcomes, with better prediction of CV outcomes than ECHO-EF. CONCLUSIONS: The ECG-EF could be used to initially screen asymptomatic left ventricular dysfunction (LVD) and it could also independently contribute to the predictions of future CV adverse events. Although further large-scale studies are warranted, DLM-based ECG-EF could serve as a promising diagnostic supportive and management-guided tool for CV disease prediction and the care of patients with LVD.
    Type of Medium: Online Resource
    ISSN: 2075-4426
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662248-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Medicines, MDPI AG, Vol. 4, No. 2 ( 2017-04-23), p. 22-
    Type of Medium: Online Resource
    ISSN: 2305-6320
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2777965-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...