GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Association for the Advancement of Artificial Intelligence (AAAI)  (2)
  • Liao, Rui  (2)
Materialart
Verlag/Herausgeber
  • Association for the Advancement of Artificial Intelligence (AAAI)  (2)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2017
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 31, No. 1 ( 2017-02-12)
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 31, No. 1 ( 2017-02-12)
    Kurzfassung: 3-D image registration, which involves aligning two or more images, is a critical step in a variety of medical applications from diagnosis to therapy. Image registration is commonly performed by optimizing an image matching metric as a cost function. However this task is challenging due to the non-convex nature of the matching metric over the plausible registration parameter space and insufficient approches for a robust optimization. As a result, current approaches are often customized to a specific problem and sensitive to image quality and artifacts. In this paper, we propose a completely different approach to image registration, inspired by how experts perform the task. We first cast the image registration problem as a "strategic learning" process, where the goal is to find the best sequence of motion actions (e.g. up, down, etc) that yields image alignment. Within this approach, an artificial agent is learned, modeled using deep convolutional neural networks, with 3D raw image data as the input, and the next optimal action as the output. To copy with the dimensionality of the problem, we propose a greedy supervised approach for an end-to-end training, coupled with attention-driven hierarchical strategy. The resulting registration approach inherently encodes both a data-driven matching metric and an optimal registration strategy (policy). We demonstrate on two 3-D/3-D medical image registration examples with drastically different nature of challenges, that the artificial agent outperforms several state-of-the-art registration methods by a large margin in terms of both accuracy and robustness.
    Materialart: Online-Ressource
    ISSN: 2374-3468 , 2159-5399
    Sprache: Unbekannt
    Verlag: Association for the Advancement of Artificial Intelligence (AAAI)
    Publikationsdatum: 2017
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Association for the Advancement of Artificial Intelligence (AAAI) ; 2018
    In:  Proceedings of the AAAI Conference on Artificial Intelligence Vol. 32, No. 1 ( 2018-04-26)
    In: Proceedings of the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence (AAAI), Vol. 32, No. 1 ( 2018-04-26)
    Kurzfassung: 2D/3D image registration to align a 3D volume and 2D X-ray images is a challenging problem due to its ill-posed nature and various artifacts presented in 2D X-ray images. In this paper, we propose a multi-agent system with an auto attention mechanism for robust and efficient 2D/3D image registration. Specifically, an individual agent is trained with dilated Fully Convolutional Network (FCN) to perform registration in a Markov Decision Process (MDP) by observing a local region, and the final action is then taken based on the proposals from multiple agents and weighted by their corresponding confidence levels. The contributions of this paper are threefold. First, we formulate 2D/3D registration as a MDP with observations, actions, and rewards properly defined with respect to X-ray imaging systems. Second, to handle various artifacts in 2D X-ray images, multiple local agents are employed efficiently via FCN-based structures, and an auto attention mechanism is proposed to favor the proposals from regions with more reliable visual cues. Third, a dilated FCN-based training mechanism is proposed to significantly reduce the Degree of Freedom in the simulation of registration environment, and drastically improve training efficiency by an order of magnitude compared to standard CNN-based training method. We demonstrate that the proposed method achieves high robustness on both spine cone beam Computed Tomography data with a low signal-to-noise ratio and data from minimally invasive spine surgery where severe image artifacts and occlusions are presented due to metal screws and guide wires, outperforming other state-of-the-art methods (single agent-based and optimization-based) by a large margin.
    Materialart: Online-Ressource
    ISSN: 2374-3468 , 2159-5399
    Sprache: Unbekannt
    Verlag: Association for the Advancement of Artificial Intelligence (AAAI)
    Publikationsdatum: 2018
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...