GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (2)
  • Liang, Yu  (2)
Material
Publisher
  • Springer Science and Business Media LLC  (2)
Language
Years
  • 1
    In: Signal Transduction and Targeted Therapy, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2023-01-03)
    Abstract: An ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of a mosaic-type recombinant vaccine candidate, named NVSI-06-09, as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had administered two or three doses of inactivated vaccine BBIBP-CorV at least 6 months prior to enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. Between May 25 and 30, 2022, 516 adults received booster vaccination with 260 in NVSI-06-09 group and 256 in BBIBP-CorV group. Interim results showed a similar safety profile between two booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 post-booster, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those by BBIBP-CorV. Our findings indicated that a booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against divergent SARS-CoV-2 variants, including Omicron and its sub-lineages.
    Type of Medium: Online Resource
    ISSN: 2059-3635
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2886872-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-06-27)
    Abstract: NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluate the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in BBIBP-CorV recipients in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who have administered two doses of BBIBP-CorV 4-6-month, 7-9-month and 〉 9-month earlier, respectively, are randomized 1:1 to receive either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The incidence of adverse reactions is low, and the overall safety profile is quite similar between two booster regimens. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster are significantly higher than those by BBIBP-CorV booster against not only SARS-CoV-2 prototype strain but also multiple variants of concerns (VOCs). Especially, the neutralizing antibody GMT against Omicron variant induced by heterologous NVSI-06-08 booster reaches 367.67, which is substantially greater than that boosted by BBIBP-CorV (GMT: 45.03). In summary, NVSI-06-08 is safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which is immunogenically superior to the homologous boost with another dose of BBIBP-CorV.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...