GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cardiovascular Research, Oxford University Press (OUP), Vol. 118, No. 11 ( 2022-08-24), p. 2519-2534
    Abstract: Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution. Methods and results We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility, and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and microvasculature. Conclusion This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.
    Type of Medium: Online Resource
    ISSN: 0008-6363 , 1755-3245
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1499917-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 125, No. Suppl_1 ( 2019-08-02)
    Abstract: Aims: A better understanding of the pathways that regulate regeneration of the coronary vasculature is important for future strategies to treat patients with heart disease. We investigated (i) the clonal dynamics of endothelial cells (EC) associated with neovascularization in the ischemic border region (ii) transcriptional signatures of regenerative EC in the ischemic heart using single cell RNA-sequencing (iii) the functional relevance of selected targets. Methods: MI was induced in ‘EC-Confetti’ mice by coronary artery ligation. EC clonal proliferation was quantified or hearts dissociated for scRNAseq. Immunofluorescence staining for targets identified by scRNAseq was performed on cardiac tissue from patients with ischemic heart disease. EC proliferation was assessed in vitro following siRNA gene silencing. Results: EC-Confetti mice express YFP, RFP, GFP, or CFP specifically in EC. Fluorophores are inherited by EC progeny following proliferation, allowing quantitative clonal analysis. Clonal proliferation was significantly increased in the infarct border at 7 days post-MI compared to healthy hearts ( P 〈 0.0001). Ten transcriptionally discrete EC clusters were defined following scRNAseq with 3 clusters predominantly composed of cells from the MI group, indicating their gene expression profiles may be relevant to neovasculogenic pathways. We selected plasmalemma vesicle associated protein (Plvap) for further study and confirmed EC-specific increased Plvap expression in ischemic border regions of human ( P =0.002) and mouse ( P =0.002) hearts, compared to healthy myocardium. siRNA gene silencing of Plvap significantly inhibited EC proliferation ( P = 0.0038), strong evidence that Plvap can directly modulate EC function. Conclusions: Generation of new blood vessels following ischemic injury in the mouse heart is predominantly mediated by clonal proliferation of resident EC. We present a gene expression atlas of resident cardiac EC, and the transcriptional hierarchy underpinning endogenous vascular repair following MI. This resource identifies novel targets, including Plvap, that may augment myocardial perfusion post-MI, and inform future design of strategies aimed at promoting vascular perfusion in ischemic heart disease.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: European Heart Journal, Oxford University Press (OUP), Vol. 40, No. 30 ( 2019-08-07), p. 2507-2520
    Abstract: A better understanding of the pathways that regulate regeneration of the coronary vasculature is of fundamental importance for the advancement of strategies to treat patients with heart disease. Here, we aimed to investigate the origin and clonal dynamics of endothelial cells (ECs) associated with neovascularization in the adult mouse heart following myocardial infarction (MI). Furthermore, we sought to define murine cardiac endothelial heterogeneity and to characterize the transcriptional profiles of pro-angiogenic resident ECs in the adult mouse heart, at single-cell resolution. Methods and results An EC-specific multispectral lineage-tracing mouse (Pdgfb-iCreERT2-R26R-Brainbow2.1) was used to demonstrate that structural integrity of adult cardiac endothelium following MI was maintained through clonal proliferation by resident ECs in the infarct border region, without significant contributions from bone marrow cells or endothelial-to-mesenchymal transition. Ten transcriptionally discrete heterogeneous EC states, as well as the pathways through which each endothelial state is likely to enhance neovasculogenesis and tissue regeneration following ischaemic injury were defined. Plasmalemma vesicle-associated protein (Plvap) was selected for further study, which showed an endothelial-specific and increased expression in both the ischaemic mouse and human heart, and played a direct role in regulating human endothelial proliferation in vitro. Conclusion We present a single-cell gene expression atlas of cardiac specific resident ECs, and the transcriptional hierarchy underpinning endogenous vascular repair following MI. These data provide a rich resource that could assist in the development of new therapeutic interventions to augment endogenous myocardial perfusion and enhance regeneration in the injured heart.
    Type of Medium: Online Resource
    ISSN: 0195-668X , 1522-9645
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2001908-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...