GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Li, Zhiwei  (3)
Material
Publisher
  • MDPI AG  (3)
Person/Organisation
Language
Years
  • 1
    In: Remote Sensing, MDPI AG, Vol. 15, No. 6 ( 2023-03-20), p. 1671-
    Abstract: Satellite remote sensing is currently the best monitoring means to obtain global carbon source and sink data. The United States, Japan, China and other countries are vigorously developing spaceborne detection technology. However, the important factors that restrict the application of greenhouse gas satellite remote sensing technology include the limited accuracy of data products. How to improve the retrieval level of greenhouse gas payloads is a problem that needs to be solved urgently. One effective way to improve data quality is to carry out satellite ground synchronous authenticity verification and system error correction. This paper mainly aims at the shortcomings of the existing TCCON and the portable verification equipment EM27/SUN, and develops a High-Resolution Fourier Transform Spectrometer (HRFTS) based on dynamic collimation technology. Through the gas absorption method and the band scanning method of the hyperspectral monochromatic light source, the instrument’s absorption spectrum measurement capability and the Instrument Line Shape (ILS) are demonstrated. The instrument’s spectral resolution is consistent with the on-orbit greenhouse gas satellite load, reaching 0.26 cm−1. For the interference data obtained by the spectrometer, spectral restoration processing, data quality control and inversion algorithm optimization were carried out to solve the problems of baseline correction, spectral fine registration, and environmental parameter profile reconstruction, and cross comparison experiments with EM27/SUN were carried out simultaneously. Finally, for the gases monitoring instrument (GMI) of the GF5-02 satellite launched on 7 September 2021, the first satellite ground synchronization verification experiment with high space-time matching was carried out. The results showed that the CO2 column concentration deviation of the satellite ground synchronization inversion was about 1.5 ppm, and the CH4 column concentration deviation was about 11.3 ppb, which verified the on-orbit detection accuracy of the GMI, and laid a foundation for the subsequent satellite inversion algorithm optimization and systematic error correction.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 15, No. 18 ( 2023-09-14), p. 4518-
    Abstract: Coal-fired power plants, as major anthropogenic CO2 emission sources, constitute one of the largest contributors to global greenhouse gas emissions. Accurately calculating the dispersion process of CO2 emissions from these point sources is crucial, as it will aid in quantifying CO2 emissions using remote sensing measurements. Employing the Lagrangian Particle Dispersion Theory Model (LPDTM), our study involves modeling CO2 diffusion from point sources. Firstly, we incorporated high-resolution DEM (Digital Elevation Model) and artificial building elements obtained through the Adaptive Deep Learning Location Matching Method, which is involved in CO2 simulation. The accuracy of the results was verified using meteorological stations and aircraft measurements. Additionally, we quantitatively analyzed the influence of terrain and artificial building characteristics on high spatial resolution atmospheric CO2 diffusion simulations, revealing the significance of surface characteristics in dispersion modeling. To validate the accuracy of the LPDTM in high-resolution CO2 diffusion simulation, a comparative experiment was conducted at a power plant in Yangzhou, Jiangsu Province, China. The simulated result was compared with observation from aerial flights, yielding the R2 (Correlation Coefficient) of 0.76, the RMSE (Root Mean Square Error) of 0.267 ppm, and the MAE (Mean Absolute Error) of 0.2315 ppm for the comparison of 73 pixels where the plume intersected with flight trajectories. The findings demonstrate a high level of consistency between the modeled CO2 point source plume morphology and concentration quantification and the actual observed outcomes. This study carried out a quantitative assessment of the influence of surface features on high-resolution atmospheric CO2 point source diffusion simulations, resulting in an enhanced accuracy of the simulated CO2 concentration field. It offers essential technological and theoretical foundations for the accurate quantification of anthropogenic CO2 emissions using top-down approaches.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 15, No. 2 ( 2023-01-07), p. 373-
    Abstract: The Greenhouse Gas Monitoring Instrument (GMI), carried by Gaofen 5 (GF5-01), and the Hyperspectral Observation Satellite (GF5-02) were successfully launched on 9 May 2018, and September 7, 2021, respectively, and are the only passive greenhouse gas payloads in China that can regularly obtain effective detection data in-orbit at this stage. Before launch, the research team carried out much laboratory calibration work and designed an on-board calibration system based on solar radiation sources which guarantees the quantitative accuracy of the payload data to the greatest extent. In order to more effectively meet the high frequency calibration requirements over the whole life cycle of the payload, the research team carried out research using the on-track site calibration method based on digital calibration field network technology, and the obtained calibration coefficient effectively complements the laboratory and on-board calibration results. The working principle of the GMI is quite different from that of a traditional imaging payload. Spatial heterodyne spectroscopy (SHS) is used to detect the absorption spectrum of greenhouse gases, has a large field of view and is non-imaging and hyperspectral. The existing fixed-site alternative calibration methods cannot fully meet the requirements of calibration tasks. In this paper, we propose a set of global digital calibration radiation field screening criteria that can meet the characteristics of the GMI and design a method to calculate the site calibration coefficients of non-absorption spectral channels according to the characteristics of hyperspectral data. Based on the historical observation data of the GMI, the initial calibration calculation of the payload launch was carried out, and the calibration results of four spectral channels of the GMI were obtained: The calibration coefficient range of the O2 channel is 1.05–1.15, the mean value is 1.10 and the standard deviation is 2.72%; the calibration coefficient of the CO2-1 channel is 1.05–1.13, the mean value is 1.09 and the standard deviation is 2.64%; the calibration coefficient of the CH4 channel is 1.08–1.10, the mean value is 1.11 and the standard deviation is 2.73%; the calibration coefficient of the CO2-2 channel is 1.09–1.14, the mean value is 1.12 and the standard deviation is 2.93%. The above results show that the radiation performance of each channel of the GMI shows no significant attenuation during this period, that the site calibration coefficient has no significant fluctuation and that the in-orbit operation state is stable.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...