GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (137)
  • Li, Zhen  (137)
Material
Publisher
  • MDPI AG  (137)
Language
Years
FID
  • 1
    In: Plants, MDPI AG, Vol. 12, No. 3 ( 2023-02-03), p. 675-
    Abstract: Grain size and flag leaf angle are two important traits that determining grain yield in rice. However, the mechanisms regulating these two traits remain largely unknown. In this study, a rice long grain 5 (lg5) mutant with a large flag leaf angle was identified, and map-based cloning revealed that a single base substitution followed by a 2 bp insertion in the LOC_Os05g40384 gene resulted in larger grains, a larger flag leaf angle, and higher plant height than the wild type. Sequence analysis revealed that lg5 is a novel allele of elongated uppermost internode-1 (EUI1), which encodes a cytochrome P450 protein. Functional complementation and overexpression tests showed that LG5 can rescue the bigger grain size and larger flag leaf angle in the Xiushui11 (XS) background. Knockdown of the LG5 transcription level by RNA interference resulted in elevated grain size and flag leaf angle in the Nipponbare (NIP) background. Morphological and cellular analyses suggested that LG5 regulated grain size and flag leaf angle by promoting cell expansion and cell proliferation. Our results provided new insight into the functions of EUI1 in rice, especially in regulating grain size and flag leaf angle, indicating a potential target for the improvement of rice breeding.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704341-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Insects Vol. 13, No. 10 ( 2022-10-13), p. 928-
    In: Insects, MDPI AG, Vol. 13, No. 10 ( 2022-10-13), p. 928-
    Abstract: RNA interference (RNAi) has been used successfully to reduce target gene expression and induce specific phenotypes in several species. It has proved useful as a tool to investigate gene function and has the potential to manage pest populations and reduce disease pathogens. However, it is not known whether different administration methods are equally effective at interfering with genes in bees. Therefore, we compared the effects of feeding and injection of small interfering RNA (siRNA) on the messenger RNA (mRNA) levels of alpha-aminoadipic semialdehyde dehydrogenase (ALDH7A1), 4-coumarate-CoA ligase (4CL), and heat shock protein 70 (HSP70). Both feeding and injection of siRNA successfully knocked down the gene but feeding required more siRNA than the injection. Our results suggest that both feeding and injection of siRNA effectively interfere with brain genes in bees. The appropriateness of each method would depend on the situation.
    Type of Medium: Online Resource
    ISSN: 2075-4450
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662247-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Machines, MDPI AG, Vol. 10, No. 2 ( 2022-01-23), p. 79-
    Abstract: Based on the bilinear discretization mathematical model of permanent magnet synchronous motor (PMSM), an improved incremental deadbeat current prediction control algorithm is proposed. Aiming at the system instability caused by the forward Euler discretization method, this paper combines the deadbeat current prediction control and the improved bilinear discretization method to improve the system stability. Further, the proposed controller considers the two-beat delay of a digital system to make the mathematical model more accurate. Moreover, the proposed bilinear discretization predictive current controller is not affected by the permanent magnet flux of the motor. Then, the system stability conditions of the proposed controller are analyzed. The simulation and experimental results verify the feasibility and effectiveness of the proposed method.
    Type of Medium: Online Resource
    ISSN: 2075-1702
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704328-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Materials Vol. 12, No. 3 ( 2019-02-01), p. 460-
    In: Materials, MDPI AG, Vol. 12, No. 3 ( 2019-02-01), p. 460-
    Abstract: Dynamic behaviors of the three-dimensional re-entrant auxetic cellular structure have been investigated by performing beam-based crushing simulation. Detailed deformation process subjected to various crushing velocities has been described, where three specific crushing modes have been identified with respect to the crushing velocity and the relative density. The crushing strength of the 3D re-entrant auxetic structure reveals to increase with increasing crushing velocity and relative density. Moreover, an analytical formula of dynamic plateau stress has been deduced, which has been validated to present theoretical predictions agreeing well with simulation results. By establishing an analytical model, the role of relative density on the energy absorption capacity of the 3D re-entrant auxetic structure has been further studied. The results indicate that the specific plastic energy dissipation is increased by increasing the relative density, while the normalized plastic energy dissipation has an opposite sensitivity to the relative density when the crushing velocity exceeds the critical transition velocity. The study in this work can provide insights into the dynamic property of the 3D re-entrant auxetic structure and provides an extensive reference for the crushing resistance design of the auxetic structure.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Symmetry, MDPI AG, Vol. 14, No. 6 ( 2022-05-25), p. 1085-
    Abstract: A hybrid energy-storage system (HESS), which fully utilizes the durability of energy-oriented storage devices and the rapidity of power-oriented storage devices, is an efficient solution to managing energy and power legitimately and symmetrically. Hence, research into these systems is drawing more attention with substantial findings. A battery–supercapacitor hybrid energy-storage system (BS-HESS) is widely adopted in the fields of renewable energy integration, smart- and micro-grids, energy integration systems, etc. Focusing on the BS-HESS, in this work we present a comprehensive survey including technologies of the battery management system (BMS), power conversion system (PCS), energy management system (EMS), predictive control techniques of the underlying system, application and cost-effective feasibility aspects, etc. This work reflects strong symmetry on different aspects of designing an HESS, and provides guidelines and design references for the research and application of an HESS.
    Type of Medium: Online Resource
    ISSN: 2073-8994
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518382-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Sustainability, MDPI AG, Vol. 14, No. 9 ( 2022-04-30), p. 5434-
    Abstract: On-road vehicle emissions play a crucial role in affecting air quality and human exposure, particularly in megacities. In the absence of comprehensive traffic monitoring networks with the general lack of intelligent transportation systems (ITSs) and big-data-driven, high-performance-computing (HPC) platforms, it remains challenging to constrain on-road vehicle emissions and capture their hotspots. Here, we established an intelligent modelling and visualization system driven by ITS traffic data for real-world, on-road vehicle emissions. Based on the HPC platform (named “City Brain”) and an agile Web Geographic Information System (WebGISs), this system can map real-time (hourly), hyperfine (10~1000 m) vehicle emissions (e.g., PM2.5, NOx, CO, and HC) and associated traffic states (e.g., vehicle-specific categories and traffic fluxes) over the Xiaoshan District in Hangzhou. Our results show sharp variations in on-road vehicle emissions on small scales, which even fluctuated up to 31.2 times within adjacent road links. Frequent and widespread emission hotspots were also exposed. Over custom spatiotemporal scopes, we virtually investigated and visualized the impacts of traffic control policies on the traffic states and on-road vehicle emissions. Such results have important implications for how traffic control policies should be optimized. Integrating this system with chemical transport models and air quality measurements would bridge the technical gap between air pollutant emissions, concentrations, and human exposure.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Materials, MDPI AG, Vol. 13, No. 21 ( 2020-11-06), p. 5015-
    Abstract: The absorption and desorption behavior of superabsorbent polymer (SAP) can influence various properties of cementitious materials. Therefore, it is essential to know these performances of SAP prior to implementation in cement-based materials. In this paper, two types of SAP with different chemical compositions were tested in free liquid (deionized water and cement filtrate) and cement paste. Five absorption test methods were considered, including the tea-bag method, the filtration method, the centrifuge method, the suction filtration method, and the slump flow method. The results show that the absorptivity of SAP A73 and SAP N in cement paste by the slump flow method are about 21 g/g and 7 g/g, respectively. In addition, the centrifuge method and suction filtration method give more accurate absorption values when compared to the tea-bag method and filtration method due to their effectiveness in removing inter-particle liquid. Though the absorptivity obtained by the tea-bag method is higher than the centrifuge method and suction filtration method, it is still a good pre-test method to reveal the performance of SAP used in cementitious materials due to time-saving and simple setups.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Sensors, MDPI AG, Vol. 20, No. 1 ( 2019-12-20), p. 54-
    Abstract: Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp2 hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biomolecules, MDPI AG, Vol. 11, No. 8 ( 2021-07-29), p. 1119-
    Abstract: In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. However, the compound–protein interaction is complicated and the features extracted by most deep models are not comprehensive, which limits the performance to a certain extent. In this paper, we proposed a multiscale convolutional network that extracted the local and global features of the protein and the topological feature of the compound using different types of convolutional networks. The results showed that our model obtained the best performance compared with the existing deep learning methods.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Catalysts, MDPI AG, Vol. 12, No. 12 ( 2022-11-27), p. 1527-
    Abstract: How to restrain the recombination of photogenerated electrons and holes is still very important for photocatalytic hydrogen production. Herein, Z-scheme ZnWO4/Mn0.5Cd0.5S (ZWMCS) nanocomposites are prepared and are applied as visible-light driven precious metal cocatalyst free photocatalyst for hydrogen generation. The ZnWO4/Mn0.5Cd0.5S nanocomposites with 30 wt% ZnWO4 (ZWMCS-2) can reach a photocatalytic hydrogen evolution rate of 3.36 mmol g−1 h−1, which is much higher than that of single ZnWO4 (trace) and Mn0.5Cd0.5S (1.96 mmol g−1 h−1). Cycling test reveals that the ZMWCS-2 nanocomposite can maintain stable photocatalytic hydrogen evolution for seven cycles (21 h). The type of heterojunction in the ZWMCS-2 nanocomposite can be identified as Z-scheme heterojunction. The Z-scheme heterojunction can effectively separate the electrons and holes, so that the hydrogen generation activity and stability of the ZWMCS-2 nanocomposite can be enhanced. This work provides a highly efficient and stable Z-scheme heterojunction photocatalyst for hydrogen generation.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...