GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2021 ( 2021-1-28), p. 1-14
    Abstract: In order to investigate the dynamic mechanical properties of the fractured rocks reinforced with different slurries, the prefractured and grouted sandy mudstone specimens were tested on a Split Hopkinson Pressure Bar (SHPB), and their dynamic failure processes were shot via a high-speed camera. The test results showed that under dynamic loading, grouting reinforcement can relieve the rock failure at the fracture part. With the increase of the impact speed, the dynamic specific strength of the modified epoxy resin grouting increases from 0.85 to 1.01, and its specific strain rate increases from 1.09 to 1.04; the dynamic specific strength and specific strain rate of cement slurry grouting increase from 1.78 to 0.95 and from 0.60 to 0.98, respectively. As a whole, the specimen reaches or approaches the dynamic parameters of the intact rock specimen after grouting repair, the stability of the rock reinforced by modified epoxy resin grouting is superior to that of the rock reinforced by cement slurry grouting, and the latter can acquire high dynamic strength under low-speed impact. The improved damage-type Zhuwangtang (ZWT) model can be used to describe the dynamic mechanical behaviors of the fractured rocks reinforced by grouting very well.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Arabian Journal of Geosciences, Springer Science and Business Media LLC, Vol. 11, No. 12 ( 2018-6)
    Type of Medium: Online Resource
    ISSN: 1866-7511 , 1866-7538
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2438771-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2021 ( 2021-3-20), p. 1-18
    Abstract: To address the prominent status of great deformation and difficult maintenance of the roadway under high stresses, this study investigated the mechanical characteristics of surrounding rocks and bearing structural stability in a roadway under adjustment and redistribution of stresses through theoretical analysis, numerical simulation, and engineering field test. Stability forms of the bearing structure of roadway surrounding rocks were analyzed by using the axis-changing theory from the perspectives of surrounding rock, mechanical properties of roadways, surrounding rock stress distribution, and mechanical mechanism of the bearing structure. It is suggested that the surrounding rock stress distribution state is improved and the bearing structure is optimized through unloading and reinforcement construction. A mechanical model of roadway excavation was constructed to analyze the influences of excavation spatial effect on the stress releasing and bearing structure of surrounding rocks. A rock postpeak strain softening and dilatation model was introduced to investigate the mechanical characteristics of the surrounding rock mass in the rupture residual zone and plastic softening zone in a roadway. Moreover, we analyzed the influences of unloading and reinforcement construction on the stress path and mechanical characteristics of the rock unit model, which disclosed the adjustment mechanism of the bearing structure of surrounding rocks by the failure development status of rocks. A numerical simulation on the distribution of surrounding rock stress fields and adjustment features of the bearing structure after roadway excavation and unloading and reinforcement construction was carried out by using the FLAC3D program. Results demonstrate that the unloading construction optimizes the axial ratio of spatial excavation in a roadway and the reinforcement zones on both sides are the supporting zones of the bearing structure. Moreover, the ratio between the distance from two side peaks to the roadway sides and the distance from the roof and floor peaks to the excavation space is equal to the coefficient of horizontal pressure. In other words, the final collapse failure mode of surrounding rock is that the long axis of the excavation unloading space points to the same direction with the maximum principal stress of the primary rock. Reinforcement forces the surrounding rocks to form a “Ω-shaped” bearing structure, which is in favor of the long-term maintenance of the roadway.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...