GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Yaping  (2)
  • Physics  (2)
Material
Publisher
Person/Organisation
Language
Years
Subjects(RVK)
  • Physics  (2)
RVK
  • 1
    In: Advanced Materials, Wiley, Vol. 31, No. 40 ( 2019-10)
    Abstract: Chemoimmunotherapy by systemic administration of individual regimens suffers from inconsistent pharmacokinetics profiles, low tumor specificity, and severe side effects. Despite promising nanoparticle‐based codelivery approaches in therapeutics, the pathophysiological barriers of solid tumors are a hurdle for tumor accumulation and deep penetration of the drug‐loaded nanoparticles. A light‐inducible nanocargo (LINC) for immunotherapy is reported. LINC is composed of a reduction‐responsive heterodimer of photosensitizer pheophorbide A (PPa) and indoleamine 2,3‐dioxygenase 1 (IDO‐1) inhibitor, i.e., NLG919, and a light‐activatable prodrug of oxaliplatin (OXA). LINC administrated through intravenous injection is passively accumulated at the tumor site to generate near‐infrared (NIR) fluorescence signal. Under fluorescence imaging guidance, the first‐wave of NIR laser irradiation induce reactive oxygen species (ROS) generation, trigger cleavage of the polyethylene glycol (PEG) corona, and thus promote tumor retention and deep penetration of LINC. When exposed to the second‐wave NIR laser illumination, LINC efficiently elicits the immune response and promotes intratumoral infiltration of cytotoxic T lymphocytes (CTLs). Furthermore, NLG919 delivered by LINC reverses the immunosuppressive tumor microenvironment by suppressing IDO‐1 activity. Chemoimmunotherapy with LINC inhibit the tumor growth, lung metastasis, and tumor recurrence. The light‐inducible self‐amplification strategy for improved drug delivery and immunotherapy shows potential.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Advanced Materials, Wiley, Vol. 32, No. 12 ( 2020-03)
    Abstract: Prodrug nanoparticles that codeliver the immune modulators to the tumor site are highly recommendable for cancer immunotherapy yet remain challenging. However, effective stimuli‐responsive strategies that exploit the endogenous hallmarks of the tumor have paved the way for cancer immunotherapy. For the first time, the development of the Boolean logic prodrug nanoparticles (BLPNs) for tumor‐targeted codelivery of immune modulators (e.g., immune activator and immune inhibitor) and combination immunotherapy is reported herein. A library of stimuli‐activatable BLPNs is fabricated yielding YES/AND logic outputs by adjusting the input combinations, including extracellular matrix metalloproteins 2/9 (MMP‐2/9), intracellular acidity (pH = 5.0–6.0), and reduction (glutathione) in the tumor microenvironment. Tunable and selective control over BLPNs dissociation and prodrug activation is achieved by specifying the connectivity of orthogonal stimuli‐labile spacers while exploiting the endogenous signals at the tumor sites. The tumor‐specific distribution of the BLPNs and stimuli‐activation of the immune modulators for highly efficient cancer immunotherapy are further demonstrated. The results reported in this study may open a new avenue for tumor‐specific delivery of immune therapeutics and precise cancer immunotherapy.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1474949-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...