GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (4)
  • Li, Yaohang  (4)
  • Wu, Fang-Xiang  (4)
Material
Publisher
  • Oxford University Press (OUP)  (4)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Briefings in Bioinformatics Vol. 22, No. 2 ( 2021-03-22), p. 1604-1619
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 2 ( 2021-03-22), p. 1604-1619
    Abstract: Drug repositioning can drastically decrease the cost and duration taken by traditional drug research and development while avoiding the occurrence of unforeseen adverse events. With the rapid advancement of high-throughput technologies and the explosion of various biological data and medical data, computational drug repositioning methods have been appealing and powerful techniques to systematically identify potential drug-target interactions and drug-disease interactions. In this review, we first summarize the available biomedical data and public databases related to drugs, diseases and targets. Then, we discuss existing drug repositioning approaches and group them based on their underlying computational models consisting of classical machine learning, network propagation, matrix factorization and completion, and deep learning based models. We also comprehensively analyze common standard data sets and evaluation metrics used in drug repositioning, and give a brief comparison of various prediction methods on the gold standard data sets. Finally, we conclude our review with a brief discussion on challenges in computational drug repositioning, which includes the problem of reducing the noise and incompleteness of biomedical data, the ensemble of various computation drug repositioning methods, the importance of designing reliable negative samples selection methods, new techniques dealing with the data sparseness problem, the construction of large-scale and comprehensive benchmark data sets and the analysis and explanation of the underlying mechanisms of predicted interactions.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Bioinformatics Vol. 36, No. 4 ( 2020-02-15), p. 1114-1120
    In: Bioinformatics, Oxford University Press (OUP), Vol. 36, No. 4 ( 2020-02-15), p. 1114-1120
    Abstract: Protein–protein interactions (PPIs) play important roles in many biological processes. Conventional biological experiments for identifying PPI sites are costly and time-consuming. Thus, many computational approaches have been proposed to predict PPI sites. Existing computational methods usually use local contextual features to predict PPI sites. Actually, global features of protein sequences are critical for PPI site prediction. Results A new end-to-end deep learning framework, named DeepPPISP, through combining local contextual and global sequence features, is proposed for PPI site prediction. For local contextual features, we use a sliding window to capture features of neighbors of a target amino acid as in previous studies. For global sequence features, a text convolutional neural network is applied to extract features from the whole protein sequence. Then the local contextual and global sequence features are combined to predict PPI sites. By integrating local contextual and global sequence features, DeepPPISP achieves the state-of-the-art performance, which is better than the other competing methods. In order to investigate if global sequence features are helpful in our deep learning model, we remove or change some components in DeepPPISP. Detailed analyses show that global sequence features play important roles in DeepPPISP. Availability and implementation The DeepPPISP web server is available at http://bioinformatics.csu.edu.cn/PPISP/. The source code can be obtained from https://github.com/CSUBioGroup/DeepPPISP. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Briefings in Bioinformatics Vol. 22, No. 5 ( 2021-09-02)
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 22, No. 5 ( 2021-09-02)
    Abstract: The rapid increase of genome data brought by gene sequencing technologies poses a massive challenge to data processing. To solve the problems caused by enormous data and complex computing requirements, researchers have proposed many methods and tools which can be divided into three types: big data storage, efficient algorithm design and parallel computing. The purpose of this review is to investigate popular parallel programming technologies for genome sequence processing. Three common parallel computing models are introduced according to their hardware architectures, and each of which is classified into two or three types and is further analyzed with their features. Then, the parallel computing for genome sequence processing is discussed with four common applications: genome sequence alignment, single nucleotide polymorphism calling, genome sequence preprocessing, and pattern detection and searching. For each kind of application, its background is firstly introduced, and then a list of tools or algorithms are summarized in the aspects of principle, hardware platform and computing efficiency. The programming model of each hardware and application provides a reference for researchers to choose high-performance computing tools. Finally, we discuss the limitations and future trends of parallel computing technologies.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Bioinformatics Vol. 34, No. 19 ( 2018-10-01), p. 3357-3364
    In: Bioinformatics, Oxford University Press (OUP), Vol. 34, No. 19 ( 2018-10-01), p. 3357-3364
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1460-2059
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...