GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Xueping  (2)
  • Yi, Kaikai  (2)
  • Zhao, Jin  (2)
Material
Person/Organisation
Language
Years
  • 1
    In: Macromolecular Bioscience, Wiley, Vol. 21, No. 8 ( 2021-08)
    Abstract: Exosomes derived from non‐tumor cells hold great potential as drug delivery vehicles because of their good biosafety and natural transference of bioactive cargo between cells. However, compared to tumor‐derived exosomes, efficient delivery is limited by their weak interactions with tumor cells. It is essential to engineer exosomes that improve tumor cellular internalization efficiency. A simple and effective strategy to enhance tumor cell uptake by engineering the exosome membrane lipids can be established by drawing on the role of lipids in tumor exosomes interacting with tumor cells. Amphiphilic phosphatidylcholine (PC) molecules are inserted into the membrane lipid layer of reticulocyte‐derived exosomes (Exos) by simple incubation to construct PC‐engineered exosomes (PC‐Exos). It is demonstrated that PC‐Exos showed significantly enhanced tumor cell internalization and uptake rate compared to native Exos, up to a twofold increase. After therapeutic agent loading, PC‐Exos remarkably promotes intracellular drug or RNA accumulation in cancer cells, thus showing enhanced in vitro anti‐tumor activity. This work demonstrates the crucial role of engineering exosomal lipids in modulating cancer cellular uptake, which may shed light on the design of high‐efficiency exosome‐based drug delivery carriers.
    Type of Medium: Online Resource
    ISSN: 1616-5187 , 1616-5195
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2039130-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Journal of Materials Chemistry B Vol. 10, No. 11 ( 2022), p. 1833-1842
    In: Journal of Materials Chemistry B, Royal Society of Chemistry (RSC), Vol. 10, No. 11 ( 2022), p. 1833-1842
    Abstract: Liposomes have been developed as drug delivery carriers to enhance the antitumor efficiency of therapeutic agents. Lipusu® (Lip), a paclitaxel (PTX) liposome, has been widely used in the treatment of breast cancer. Compared with PTX, Lip could change the biodistribution and reduce the systemic toxicity. However, there was no positive effect on the entry of PTX into tumor cells, and thus the therapeutic effect was not significantly improved. Therefore, it is meaningful to engineer Lip for improving tumor cellular uptake efficiency. Here, lysophosphatidylcholine (LPC)-engineered Lip (LPC-Lip) was constructed via inserting single chain lipid tails into liposomal lipid bilayers, which was realized by simple incubation. Compared with Lip, the better cellular uptake of liposomes modified with LPC resulted in enhanced cytotoxic activity of LPC-Lip in 4T1 cells. Furthermore, stronger tumor growth inhibition was observed in LPC-Lip treated 4T1 tumor-bearing mice without significant side effects. In conclusion, by modulating the lipid composition of Lip, the antitumor efficacy can be improved, and LPC engineered Lip may serve as a promising formulation of PTX for future cancer therapy.
    Type of Medium: Online Resource
    ISSN: 2050-750X , 2050-7518
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2702241-9
    detail.hit.zdb_id: 2705149-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...