GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Li, Wangping  (2)
  • 2020-2024  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 2020-2024  (2)
Year
  • 1
    In: Remote Sensing, MDPI AG, Vol. 15, No. 7 ( 2023-03-29), p. 1813-
    Abstract: During the past several decades, desertification and land degradation have become more and more serious in Mongolia. The drivers of land use/cover change (LUCC), such as population dynamics and climate change, are increasingly important to local sustainability studies. They can only be properly analyzed at small scales that capture the socio-economic conditions. Several studies have been carried out to examine the pattern of LUCC in Mongolia, but they have been focused on changes in single land types at a local scale. Although some of them were carried out at the national scale, the data interval is more than 10 years. A small-scale and year-by-year dataset of LUCC in Mongolia is thus needed for comprehensive analyses. We obtained year-by-year land use/cover changes in Mongolia from 1990 to 2021 using Landsat TM/OLI data. First, we established a random forest (RF) model. Then, in order to improve the classification accuracy of the misclassification of cropland, grassland, and built and barren areas, the classification and regression trees model (CART) was introduced for post-processing. The results show that 17.6% of the land surface has changed at least once among the six land categories from 1990 to 2021. While the area of barren land has significantly increased, the grassland and forest areas have exhibited a decreasing trend in the past 32 years. The other land types do not show promising changes. To determine the driving factors of LUCC, we applied an RF feature importance ranking to environmental factors, physical factors, socioeconomic factors, and accessibility factors. The mean annual precipitation (MAP), evapotranspiration (ET), mean annual air temperature (MAAT), DEM, GDP, and distance to railway are the main driving factors that have determined the distribution and changes in land types. Interestingly, unlike the global anti-V-shaped pattern, we found that the land use/cover changes show an N-shaped trend in Mongolia. These characteristics of land use/cover change in Mongolia are primarily due to the agricultural policies and rapid urbanization. The results present comprehensive land use/cover change information for Mongolia, and they are of great significance for policy-makers to formulate a scientific sustainable development strategy and to alleviate the desertification of Mongolia.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 14, No. 15 ( 2022-08-06), p. 3797-
    Abstract: Soil texture data are the basic input parameters for many Earth System Models. As the largest middle–low altitude permafrost regions on the planet, the land surface processes on the Qinghai–Tibet Plateau can affect regional and even global water and energy cycles. However, the spatial distribution of soil texture data on the plateau is largely unavailable due to the difficulty of obtaining field data. Based on collection data from field surveys and environmental factors, we predicted the spatial distribution of clay, silt, and sand contents at a 1 km resolution, from 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm soil depth layers. The random forest models were constructed to predict the soil texture according to the relationships between environmental factors and soil texture data. The results showed that the soil particles of the QTP are dominated by sand, which accounts for more than 70% of the total particles. As for the spatial distribution, silt and clay contents are high in the southeast plateau, and low values of silt and clay mainly appeared in the northwest plateau. Climate and NDVI values are the most important factors that affect the spatial distribution of soil texture on the QTP. The results of this study provide the soil texture data at different depths for the whole plateau at a spatial resolution of 1 km, and the dataset can be used as an input parameter for many Earth System Models.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...