GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (11)
  • Li, Tingting  (11)
Material
Publisher
  • MDPI AG  (11)
Language
Years
FID
  • 1
    In: Viruses, MDPI AG, Vol. 14, No. 8 ( 2022-08-16), p. 1785-
    Abstract: Varicella–zoster virus (VZV) is the causative agent of varicella and herpes zoster (HZ) and can pose a significant challenge to human health globally. The initial VZV infection—more common in children—causes a self-limiting chicken pox. However, in later life, the latent VZV can become reactivated in these patients, causing HZ and postherpetic neuralgia (PHN), a serious and painful complication. VZV glycoprotein E (gE) has been developed into a licensed subunit vaccine against HZ (Shingrix). However, its efficacy relies on the concomitant delivery of a robust adjuvant (AS01B). Here, we sought to create a new immunogen for vaccine design by displaying the VZV–gE on the baculovirus surface (Bac–gE). Correct localization and display of gE on the engineered baculovirus was verified by flow cytometry and immune electron microscopy. We show that Bac–gE provides excellent antigenicity against VZV and induces not only stronger gE-specific CD4+ and CD8+ T cell responses but also higher levels of VZV–specific neutralizing antibodies as compared with other vaccine strategies in mice. Collectively, we show that the baculovirus display of VZV–gE confers ideal humoral and cellular immune responses required for HZ vaccine development, paving the way for a baculovirus-based vaccine design.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Foods, MDPI AG, Vol. 9, No. 11 ( 2020-11-19), p. 1698-
    Abstract: In order to verify the cryoprotective effect of an antifreeze protein (BaAFP-1) obtained from barley on bread dough, the effect of BaAFP-1 on the rheological properties, microstructure, fermentation, and baking performance including the proofing time and the specific volume of bread dough and bread crumb properties during freezing treatment and freeze-thaw cycles were analysed. BaAFP-1 reduced the rate of decrease in storage modulus and loss modulus values during freezing treatment and freeze-thaw cycles. It influenced the formation and the shape of ice formed during freezing and inhibited ice recrystallization during freeze-thaw. BaAFP-1 maintained gas production ability and gas retention properties, protected gluten network and the yeast cells from deterioration caused by ice formation and ice crystals recrystallisation in dough samples during freezing treatment and freeze-thaw treatment. It slow down the increase rate of hardness of bread crumb. The average area of pores in bread crumbs decreased significantly (p 〈 0.05) as the total number of pores increased (p 〈 0.05), and the addition of BaAFP-1 inhibited this deterioration. These results confirmed the cryoprotective activity of BaAFP-1 in bread dough during freezing treatment and freeze-thaw cycles.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cells, MDPI AG, Vol. 10, No. 2 ( 2021-01-28), p. 258-
    Abstract: It is a widely known that heat stress induces a reduction in milk production in cows and impairs their overall health. Studies have shown that taurine protects tissues and organs under heat stress. However, there have yet to be studies showing the functions of taurine in mammary alveolar cells-large T antigen (MAC-T) (a bovine mammary epithelial cell line) cells under heat shock. Therefore, different concentrations of taurine (10 mM, 50 mM, and 100 mM) were tested to determine the effects on heat-induced MAC-T cells. The results showed that taurine protected the cells against heat-induced damage as shown by morphological observations in conjunction with suppressed the translocation and expression of heat shock factor 1 (HSF1). Moreover, taurine not only reversed the decline in antioxidase (superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX)) activities but also attenuated the accumulation of malondialdehyde (MDA). Meanwhile, mitochondrial damage (morphology and complex I activity) resulting from heat exposure was mitigated. Taurine also alleviated the rates of cell apoptosis and markedly depressed the mRNA expressions of BCL2 associated X, apoptosis regulator (BAX) and caspase3. Furthermore, compared with the heat stress (HS) group, the protein levels of caspase3 and cleaved caspase3 were decreased in all taurine groups. In summary, taurine improves the antioxidant and anti-apoptosis ability of MAC-T cells thereby alleviates damage of cells due to heat insults.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Membranes, MDPI AG, Vol. 12, No. 7 ( 2022-06-30), p. 683-
    Abstract: Despite numerous studies undertaken to define the development and significance of the dynamic membrane (DM) formed on some coarse materials, the optimization of reactor configuration and the control of the membrane fouling of anaerobic dynamic membrane bioreactor (AnDMBR) need to be further investigated. The aim of this study was to design a novel anaerobic gravity-driven dynamic membrane bioreactor (AnGDMBR) for the effective and low-cost treatment of municipal wastewater. An 800 mesh nylon net was determined as the optimal support material based on its less irreversible fouling and higher effluent quality by the dead-end filtration experiments. During the continuous operation period of 44 days, the reactor performance, DM filtration behavior and microbial characteristics were studied and compared with the results of recent studies. AnGDMBR had a higher removal rate of chemical oxygen demand (COD) of 85.45 ± 7.06%. Photometric analysis integrating with three-dimensional excitation–emission matrix fluorescence spectra showed that the DM effectively intercepted organics (46.34 ± 16.50%, 75.24 ± 17.35%, and 66.39 ± 17.66% for COD, polysaccharides, and proteins). The addition of suspended carriers effectively removed the DM layer by mechanical scouring, and the growth rate of transmembrane pressure (TMP) and the decreasing rate of flux were reduced from 18.7 to 4.7 Pa/h and 0.07 to 0.01 L/(m2·h2), respectively. However, a dense and thin morphological structure of the DM layer was still observed in the end of reactor operation and plenty of filamentous microorganisms (i.e., SJA-15 and Anaerolineaceae) and the acidogens (i.e., Aeromonadaceae) predominated in the DM layer, which was also embedded in the membrane pore and led to severe irreversible fouling. In summary, the novel AnGDMBR has a superior performance (higher organic removal and lower fouling rates), which provides useful information on the configuration and operation of AnDMBRs for municipal wastewater treatment.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2614641-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Antibiotics, MDPI AG, Vol. 11, No. 3 ( 2022-03-21), p. 418-
    Abstract: Antimicrobial resistance (AMR) poses a huge threat to public health. The development of novel antibiotics is an effective strategy to tackle AMR. Cyclic diadenylate monophosphate (c-di-AMP) has recently been identified as an essential signal molecule for some important bacterial pathogens involved in various bacterial physiological processes, leading to its synthase diadenylate cyclase becoming an attractive antimicrobial drug target. In this study, based on the enzymatic activity of diadenylate cyclase of Streptococcus suis (ssDacA), we established a high-throughput method of screening for ssDacA inhibitors. Primary screening with a compound library containing 1133 compounds identified IPA-3 (2,2′-dihydroxy-1,1′-dinapthyldisulfide) as an ssDacA inhibitor. High-performance liquid chromatography (HPLC) analysis further indicated that IPA-3 could inhibit the production of c-di-AMP by ssDacA in vitro in a dose-dependent manner. Notably, it was demonstrated that IPA-3 could significantly inhibit the growth of several Gram-positive bacteria which harbor an essential diadenylate cyclase but not E. coli, which is devoid of the enzyme, or Streptococcus mutans, in which the diadenylate cyclase is not essential. Additionally, the binding site in ssDacA for IPA-3 was predicted by molecular docking, and contains residues that are relatively conserved in diadenylate cyclase of Gram-positive bacteria. Collectively, our results illustrate the feasibility of ssDacA as an antimicrobial target and consider IPA-3 as a promising starting point for the development of a novel antibacterial.
    Type of Medium: Online Resource
    ISSN: 2079-6382
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2681345-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biology, MDPI AG, Vol. 13, No. 6 ( 2024-06-10), p. 427-
    Abstract: Ulcerative colitis (UC) is an inflammatory bowel disease that causes chronic inflammation in the large intestine. The etiology of UC is complex and incompletely understood, with potential contributing factors including genetic susceptibility, environmental influences, immune dysregulation, and gut barrier dysfunction. Despite available therapeutic drugs, the suboptimal cure rate for UC emphasizes the necessity of developing novel therapeutics. Traditional Chinese Medicine (TCM) has attracted great interest in the treatment of such chronic inflammatory diseases due to its advantages, such as multi-targets and low side effects. In this study, a mouse model of Dextran Sulfate Sodium (DSS)-induced acute colitis was established and the efficacy of Zhenqi Granule, a TCM preparation composed of the extractives from Astragali Radix and Fructus Ligustri Lucidi, was evaluated. The results showed that treatment with Zhenqi Granule prior to or post-DSS induction could alleviate the symptoms of colitis, including weight loss, diarrhea, hematochezia, colon length shortening, and pathological damage of colon tissues of the DSS-treated mice. Further, network pharmacology analysis showed that there were 98 common targets between the active components of Zhenqi Granule and the targets of UC, and the common targets were involved in the regulation of inflammatory signaling pathways. Our results showed that Zhenqi Granule had preventive and therapeutic effects on acute colitis in mice, and the mechanism may be that the active components of Zhenqi Granule participated in the regulation of inflammatory response. This study provided data reference for further exploring the mechanism of Zhenqi Granule and also provided potential treatment strategies for UC.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Membranes, MDPI AG, Vol. 13, No. 9 ( 2023-08-24), p. 753-
    Abstract: Nanofiltration application for the separation of Mg2+-Li+ from salt-lake brines was attempted in the present work. Four different nanofiltration membranes identified in the manuscript as DL, DK, NF-270, and NF-90 were used to treat salt brine with a magnesium to lithium ratio (MLR) of 61, additionally contaminated by the other ions such as Na+, K+, Ca2+, etc. The effect of the dilution factor, operating pressure, circulation rate, and feed pH were assessed to identify the optimal operating conditions for each membrane based on the retention efficiency of each ion. The results showed an insignificant effect of Ca2+ on the retention performance of Mg2+-Li+. Na+ and K+ had a smaller hydration radius and larger diffusion coefficient, which competed with Li+ and altered the separation of Mg2+-Li+. Under the optimal conditions (dilution factor: 40; operating pressure: 1.2 MPa; circulation flow rate: 500 L/h; pH: 7), the retention efficiency of lithium was as low as 5.17%, separation factor (SF) was as low as 0.074, and the MLR in the permeate reduced to 0.088.
    Type of Medium: Online Resource
    ISSN: 2077-0375
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2614641-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Foods, MDPI AG, Vol. 12, No. 12 ( 2023-06-12), p. 2347-
    Abstract: Putrescine is a low-molecular-weight organic compound that is widely found in pickled foods. Although the intake of biogenic amines is beneficial to humans, an excessive intake can cause discomfort. In this study, the ornithine decarboxylase gene (ODC) was involved in putrescine biosynthesis. After cloning, expression and functional verification, it was induced and expressed in E. coli BL21 (DE3). The relative molecular mass of the recombinant soluble ODC protein was 14.87 kDa. The function of ornithine decarboxylase was analyzed by determining the amino acid and putrescine content. The results show that the ODC protein could catalyze the decarboxylation of ornithine to putrescine. Then, the three-dimensional structure of the enzyme was used as a receptor for the virtual screening of inhibitors. The binding energy of tea polyphenol ligands to the receptor was the highest at −7.2 kcal mol−1. Therefore, tea polyphenols were added to marinated fish to monitor the changes in putrescine content and were found to significantly inhibit putrescine production (p 〈 0.05). This study lays the foundation for further research on the enzymatic properties of ODC and provides insight into an effective inhibitor for controlling the putrescine content in pickled fish.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 24, No. 18 ( 2023-09-06), p. 13729-
    Abstract: Tumor immune microenvironment constituents, such as CD8+ T cells, have emerged as crucial focal points for cancer immunotherapy. Given the absence of reliable biomarkers for clear cell renal cell carcinoma (ccRCC), we aimed to ascertain a molecular signature that could potentially be linked to CD8+ T cells. The differentially expressed genes (DEGs) linked to CD8+ T cells were identified through an analysis of single-cell RNA sequencing (scRNA-seq) data obtained from the Gene Expression Omnibus (GEO) database. Subsequently, immune-associated genes were obtained from the InnateDB and ImmPort datasets and were cross-referenced with CD8+ T-cell-associated DEGs to generate a series of DEGs linked to immune response and CD8+ T cells. Patients with ccRCC from the Cancer Genome Atlas (TCGA) were randomly allocated into testing and training groups. A gene signature was established by conducting LASSO-Cox analysis and subsequently confirmed using both the testing and complete groups. The efficacy of this signature in evaluating immunotherapy response was assessed on the IMvigor210 cohort. Finally, we employed various techniques, including CIBERSORT, ESTIMATE, ssGSEA, and qRT-PCR, to examine the immunological characteristics, drug responses, and expression of the signature genes in ccRCC. Our findings revealed 206 DEGs linked to immune response and CD8+ T cells, among which 65 genes were correlated with overall survival (OS) in ccRCC. A risk assessment was created utilizing a set of seven genes: RARRES2, SOCS3, TNFSF14, XCL1, GRN, CLDN4, and RBP7. The group with a lower risk showed increased expression of CD274 (PD-L1), suggesting a more favorable response to anti-PD-L1 treatment. The seven-gene signature demonstrated accurate prognostic prediction for ccRCC and holds potential as a clinical reference for treatment decisions.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cells, MDPI AG, Vol. 10, No. 2 ( 2021-02-17), p. 423-
    Abstract: microRNAs play an important role in the growth and development of chicken embryos, including the regulation of skeletal muscle genesis, myoblast proliferation, differentiation, and apoptosis. Our previous RNA-seq studies showed that microRNA-27b-3p (miR-27b-3p) might play an important role in regulating the proliferation and differentiation of chicken primary myoblasts (CPMs). However, the mechanism of miR-27b-3p regulating the proliferation and differentiation of CPMs is still unclear. In this study, the results showed that miR-27b-3p significantly promoted the proliferation of CPMs and inhibited the differentiation of CPMs. Then, myostatin (MSTN) was confirmed to be the target gene of miR-27b-3p by double luciferase reporter assay, RT-qPCR, and Western blot. By overexpressing and interfering with MSTN expression in CPMs, the results showed that overexpression of MSTN significantly inhibited the proliferation and differentiation of CPMs. In contrast, interference of MSTN expression had the opposite effect. This study showed that miR-27b-3p could promote the proliferation of CPMs by targeting MSTN. Interestingly, both miR-27b-3p and MSTN can inhibit the differentiation of CPMs. These results provide a theoretical basis for further understanding the function of miR-27b-3p in chicken and revealing its regulation mechanism on chicken muscle growth.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...