GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Aging Cell, Wiley, Vol. 21, No. 7 ( 2022-07)
    Abstract: Accelerated aging is a hallmark of Down syndrome (DS), with adults experiencing early‐onset Alzheimer's disease and premature aging of the skin, hair, and immune and endocrine systems. Accelerated epigenetic aging has been found in the blood and brain tissue of adults with DS but when premature aging in DS begins remains unknown. We investigated whether accelerated aging in DS is already detectable in blood at birth. We assessed the association between age acceleration and DS using five epigenetic clocks in 346 newborns with DS and 567 newborns without DS using Illumina MethylationEPIC DNA methylation array data. We compared two epigenetic aging clocks (DNAmSkinBloodClock and pan‐tissue DNAmAge) and three epigenetic gestational age clocks (Haftorn, Knight, and Bohlin) between DS and non‐DS newborns using linear regression adjusting for observed age, sex, batch, deconvoluted blood cell proportions, and genetic ancestry. Targeted sequencing of GATA1 was performed in a subset of 184 newborns with DS to identify somatic mutations associated with transient abnormal myelopoiesis. DS was significantly associated with increased DNAmSkinBloodClock (effect estimate = 0.2442, p   〈  0.0001), with an epigenetic age acceleration of 244 days in newborns with DS after adjusting for potential confounding factors (95% confidence interval: 196–292 days). We also found evidence of epigenetic age acceleration associated with somatic GATA1 mutations among newborns with DS ( p  = 0.015). DS was not associated with epigenetic gestational age acceleration. We demonstrate that accelerated epigenetic aging in the blood of DS patients begins prenatally, with implications for the pathophysiology of immunosenescence and other aging‐related traits in DS.
    Type of Medium: Online Resource
    ISSN: 1474-9718 , 1474-9726
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2099130-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 214-214
    Abstract: Background: Down syndrome (DS) is associated with an up to 30-fold increased risk of B-cell acute lymphoblastic leukemia (ALL), and DS-ALL patients have worse overall survival and increased long-term treatment-related health conditions compared with non-DS ALL patients. In a recent genome-wide association study of DS-ALL, established ALL genetic risk loci were associated with DS-ALL, with several single nucleotide polymorphisms (SNPs) conferring a larger effect on ALL risk in the context of DS than in euploidy. We performed an epigenome-wide association study (EWAS) to elucidate whether epigenetic differences at birth are associated with risk of subsequent DS-ALL. Methods: The DS-ALL Discovery Study included 147 DS-ALL cases and 198 DS controls from the International Study of Down Syndrome Acute Leukemia, with newborn dried bloodspots (DBS) obtained from California (n=326) and Washington state (n=19) biobanks. The DS-ALL Replication Study included 24 DS-ALL cases and 24 DS controls with newborn DBS from the Michigan Neonatal Biobank. DNA was isolated from DBS, bisulfite converted, and assayed using Illumina Infinium MethylationEPIC Beadchip genome-wide DNA methylation arrays. Raw data were processed using "minfi" and "noob" packages in R. Reference-based deconvolution of blood cell proportions was performed using the Identifying Optimal DNA methylation Libraries (IDOL) algorithm, using DNA methylation data from cord blood reference samples, to estimate proportions of B cells, T cells (CD4+ and CD8+), monocytes, granulocytes, natural killer cells, and nucleated red blood cells. We compared each cell type proportion between DS-ALL cases and DS controls using linear regression adjusting for sex, plate, and principal components (PCs) to account for genetic ancestry. To identify single CpG probes associated with DS-ALL risk, we performed a multiethnic EWAS of DS-ALL in each study using linear regression adjusting for sex, plate, and PCs related to: 1) cell-type proportions and 2) genetic ancestry. Differentially methylated regions (DMRs) were identified using DMRcate and comb-p methods. In the Discovery Study, genome-wide SNP array data were available for 131 cases and 130 controls, and data from targeted sequencing of somatic mutations in exons 2/3 of GATA1 were available for 184/198 DS controls. Results: Deconvolution of blood cell proportions in the DS-ALL Discovery Study showed significantly higher B cell proportions in newborns with DS who later developed ALL (mean=0.0128, sd=0.0151) compared with DS controls (mean=0.00826, sd=0.0115) (P=6.4x10 -4, coefficient=0.0052). A significantly higher B cell proportion at birth was also found in DS-ALL cases in the independent Replication Study (cases mean=0.048, sd=0.024; controls mean=0.039, sd=0.028; P=0.03, coefficient=0.015). In the Discovery Study, the B cell difference remained significant (P=5.8x10 -3) with a similar effect size (coefficient=0.0045) after removal of GATA1 mutation-positive DS controls (n=30). We also investigated whether DS-ALL risk SNPs at ARID5B, IKZF1, GATA3, and CDKN2A may confound the association, but the increased B cell proportions in DS-ALL remained significant and effect estimates slightly increased in SNP genotype-adjusted models (coefficient range:0.0055-0.0059). In the EWAS of DS-ALL, 9 CpGs reached epigenome-wide significance (P & lt;7.67x10 -8), including 2 CpGs overlapping the promoter of the tumor suppressor gene TRIM13, frequently deleted in B-CLL, although none of these showed evidence of association (P & lt;0.05) in the Replication Study. We identified 125 DMRs associated with DS-ALL in the Discovery Study. For 3 DMRs, overlapping genes HOPX, SMIM24, and PPP1R10, all implicated in normal and leukemic stem cell function, there were multiple significant CpGs in the Replication Study (P & lt;0.05) all with effects in the same direction as the Discovery Study DMRs. Conclusions: Increased B cell proportions in newborns with DS may be a risk factor for development of DS-ALL in childhood. This finding, based on DNA methylation data, requires confirmation using conventional cell count measures, and should be explored as a novel biomarker for ALL risk in the non-DS population. Single CpGs and DMRs associated with DS-ALL risk in our Discovery Study require further investigation, including in additional ALL case-control studies in DS and non-DS populations. Disclosures Ma: Celgene/Bristol Myers Squibb: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 14 ( 2022-07-26), p. 4132-4136
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), ( 2023-09-29)
    Abstract: Background. Associations between maternal tobacco exposure during pregnancy and childhood acute lymphoblastic leukemia (ALL) have yielded mixed results. This may be due to biases in self-reported smoking or other differences in individual level risk factors. We utilized a biological marker of maternal tobacco exposure to evaluate the association between maternal tobacco exposure during pregnancy, genetics, and subsequent childhood ALL risk in two large population-based studies of childhood ALL in California. Methods. Maternal exposure to tobacco smoke was assessed with a validated methylation marker (cg05575921) of the aryl hydrocarbon receptor repressor (AHRR) gene in newborn dried blood spots. We adjusted for sex, birthweight, gestational age, mode of delivery, year of birth, AHRR quantitative trait locus (mQTL) rs77111113, and a polygenetic risk score for childhood ALL. We additionally adjusted for principal components in a gene-environment interaction testing method that incorporates gene-only and environment-only effects along with interactions. Results. AHRR hypomethylation overall was not associated with childhood ALL. In gene-environment interaction testing, several genetic variants displayed significant interaction with AHRR hypomethylation and childhood ALL. Conclusions. Our results suggest novel candidates in PTPRK and DPP6 may play a role in tobacco-related leukemogenesis. Further research is necessary to better understand the effects of tobacco and these variants on childhood ALL risk. Impact: Despite lack of an overall “main effect,” tobacco exposure during pregnancy impacts childhood ALL risk depending on specific genetic variants.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 31, No. 21 ( 2022-10-28), p. 3741-3756
    Abstract: Genome-wide association studies have identified a growing number of single nucleotide polymorphisms (SNPs) associated with childhood acute lymphoblastic leukemia (ALL), yet the functional roles of most SNPs are unclear. Multiple lines of evidence suggest that epigenetic mechanisms may mediate the impact of heritable genetic variation on phenotypes. Here, we investigated whether DNA methylation mediates the effect of genetic risk loci for childhood ALL. We performed an epigenome-wide association study (EWAS) including 808 childhood ALL cases and 919 controls from California-based studies using neonatal blood DNA. For differentially methylated CpG positions (DMPs), we next conducted association analysis with 23 known ALL risk SNPs followed by causal mediation analyses addressing the significant SNP-DMP pairs. DNA methylation at CpG cg01139861, in the promoter region of IKZF1, mediated the effects of the intronic IKZF1 risk SNP rs78396808, with the average causal mediation effect (ACME) explaining ~30% of the total effect (ACME P = 0.0031). In analyses stratified by self-reported race/ethnicity, the mediation effect was only significant in Latinos, explaining ~41% of the total effect of rs78396808 on ALL risk (ACME P = 0.0037). Conditional analyses confirmed the presence of at least three independent genetic risk loci for childhood ALL at IKZF1, with rs78396808 unique to non-European populations. We also demonstrated that the most significant DMP in the EWAS, CpG cg13344587 at gene ARID5B (P = 8.61 × 10−10), was entirely confounded by the ARID5B ALL risk SNP rs7090445. Our findings provide new insights into the functional pathways of ALL risk SNPs and the DNA methylation differences associated with risk of childhood ALL.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 30, No. 8 ( 2021-08-01), p. 1517-1525
    Abstract: Parental smoking is implicated in the etiology of acute lymphoblastic leukemia (ALL), the most common childhood cancer. We recently reported an association between an epigenetic biomarker of early-life tobacco smoke exposure at the AHRR gene and increased frequency of somatic gene deletions among ALL cases. Methods: Here, we further assess this association using two epigenetic biomarkers for maternal smoking during pregnancy—DNA methylation at AHRR CpG cg05575921 and a recently established polyepigenetic smoking score—in an expanded set of 482 B-cell ALL (B-ALL) cases in the California Childhood Leukemia Study with available Illumina 450K or MethylationEPIC array data. Multivariable Poisson regression models were used to test the associations between the epigenetic biomarkers and gene deletion numbers. Results: We found an association between DNA methylation at AHRR CpG cg05575921 and deletion number among 284 childhood B-ALL cases with MethylationEPIC array data, with a ratio of means (RM) of 1.31 [95% confidence interval (CI), 1.02–1.69] for each 0.1 β value reduction in DNA methylation, an effect size similar to our previous report in an independent set of 198 B-ALL cases with 450K array data [meta-analysis summary RM (sRM) = 1.32; 95% CI, 1.10–1.57] . The polyepigenetic smoking score was positively associated with gene deletion frequency among all 482 B-ALL cases (sRM = 1.31 for each 4-unit increase in score; 95% CI, 1.09–1.57). Conclusions: We provide further evidence that prenatal tobacco-smoke exposure may influence the generation of somatic copy-number deletions in childhood B-ALL. Impact: Analyses of deletion breakpoint sequences are required to further understand the mutagenic effects of tobacco smoke in childhood ALL.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 3 ( 2022-03), p. 865-868
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 25, No. 9 ( 2023-09-05), p. 1709-1720
    Abstract: Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for pediatric central nervous system tumors have been identified to date. Methods Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case–control cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess possible links with brain tissue expression across 18 628 genes. Results Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179–1.374). The association was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8). Conclusions In this population-based genome-wide association study meta-analysis, we identify and replicate 9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide significant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate that genetic susceptibility differs between low- and high-grade astrocytoma.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: PLOS Genetics, Public Library of Science (PLoS), Vol. 18, No. 9 ( 2022-9-7), p. e1010388-
    Abstract: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. PA has at least a 50% higher incidence in populations of European ancestry compared to other ancestral groups, which may be due in part to genetic differences. Methods We first compared the global proportions of European, African, and Amerindian ancestries in 301 PA cases and 1185 controls of self-identified Latino ethnicity from the California Biobank. We then conducted admixture mapping analysis to assess PA risk with local ancestry. Results We found PA cases had a significantly higher proportion of global European ancestry than controls (case median = 0.55, control median = 0.51, P value = 3.5x10 -3 ). Admixture mapping identified 13 SNPs in the 6q14.3 region ( SNX14) contributing to risk, as well as three other peaks approaching significance on chromosomes 7, 10 and 13. Downstream fine mapping in these regions revealed several SNPs potentially contributing to childhood PA risk. Conclusions There is a significant difference in genomic ancestry associated with Latino PA risk and several genomic loci potentially mediating this risk.
    Type of Medium: Online Resource
    ISSN: 1553-7404
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2022
    detail.hit.zdb_id: 2186725-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 4, No. 1 ( 2022-01-01)
    Abstract: Childhood glioblastoma multiforme (GBM) is a highly aggressive disease with low survival, and its etiology, especially concerning germline genetic risk, is poorly understood. Mitochondria play a key role in putative tumorigenic processes relating to cellular oxidative metabolism, and mitochondrial DNA variants were not previously assessed for association with pediatric brain tumor risk. Methods We conducted an analysis of 675 mitochondrial DNA variants in 90 childhood GBM cases and 2789 controls to identify enrichment of mitochondrial variant associated with GBM risk. We also performed this analysis for other glioma subtypes including pilocytic astrocytoma. Nuclear-encoded mitochondrial gene variants were also analyzed. Results We identified m1555 A & gt;G was significantly associated with GBM risk (adjusted OR 29.30, 95% CI 5.25–163.4, P-value 9.5 X 10–4). No association was detected for other subtypes. Haplotype analysis further supported the independent risk contributed by m1555 G & gt;A, instead of a haplogroup joint effect. Nuclear-encoded mitochondrial gene variants identified significant associations in European (rs62036057 in WWOX, adjusted OR = 2.99, 95% CI 1.88–4.75, P-value = 3.42 X 10–6) and Hispanic (rs111709726 in EFHD1, adjusted OR = 3.57, 95% CI 1.99–6.40, P-value = 1.41 X 10–6) populations in ethnicity-stratified analyses. Conclusion We report for the first time a potential role played by a functional mitochondrial ribosomal RNA variant in childhood GBM risk, and a potential role for both mitochondrial and nuclear-mitochondrial DNA polymorphisms in GBM tumorigenesis. These data implicate cellular oxidative metabolic capacity as a contributor to the etiology of pediatric glioblastoma.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...