GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (2)
  • Li, Rengang  (2)
Material
Publisher
  • Optica Publishing Group  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optical Materials Express Vol. 11, No. 7 ( 2021-07-01), p. 1989-
    In: Optical Materials Express, Optica Publishing Group, Vol. 11, No. 7 ( 2021-07-01), p. 1989-
    Abstract: Research in the field of photonic integrated circuits (PICs) is taking a boost, especially because of its compatibility with the modern complementary metal-oxide semiconductor fabrication technology. Silicon-on-insulator slot waveguides are a burgeoning platform for sophisticated on-chip integration applications and have been extensively leveraged for PICs. Here the structural optimization and parametric analysis of the slot waveguide geometry for optical enhancement and nanoscale confinement in the C band are presented. Theoretical investigations of the mode field distribution, field confinement factor and effective refractive index for distinct slot waveguide structures are critically examined and comprehensively evaluated. We present four types of slot waveguides, including conventional silicon-on-insulator vertical slot waveguides, slot waveguides using nitrides materials in slot regions, slot waveguides using photonic crystal slabs with air holes, and horizontal slot waveguides with aluminum nitride slots. We demonstrate that by the use of photonic crystal slabs and the presence of nitrides slots, field confinement factors can be enhanced.
    Type of Medium: Online Resource
    ISSN: 2159-3930
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 2619914-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Express Vol. 29, No. 7 ( 2021-03-29), p. 9826-
    In: Optics Express, Optica Publishing Group, Vol. 29, No. 7 ( 2021-03-29), p. 9826-
    Abstract: We demonstrate the optical trapping of single dielectric nanoparticles in a microfluidic chamber using a coupled T-shaped copper plasmonic nanoantenna for studying light–matter interaction. The nanoantenna is composed of two identical copper elements separated by a 50 nm gap and each element is designed with two nanoblocks. Our nanoantenna inherits three different advantages compared to previous plasmonic nanoantennas, which are usually made of gold. First, copper is a very promising plasmonic material with its very similar optical properties as gold. Second, copper is comparably cheap, which is compatible with industry-standard fabrication processes and has been widely used in microelectronics. Third, the trapping area of tweezers is expanded due to the intrinsic Fabry–Perot cavity with two parallel surfaces. We present finite element method simulations of the near-field distribution and photothermal effects. And we perform Maxwell stress tensor simulations of optical forces exerted on an individual nanoparticle in the vicinity of the nanoantenna. In addition, we examine how the existence of an oxide layer of cupric oxide and the heat sink substrate influence the optical trapping properties of copper nanoantennas. This work demonstrates that the coupled T-shaped copper nanoantennas are a promising means as optical nanotweezers to trap single nanoparticles in solution, opening up a new route for nanophotonic devices in optical information processing and on-chip biological sensing.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...