GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • Li, Qun  (5)
Material
Publisher
  • MDPI AG  (5)
Language
Years
  • 1
    In: Molecules, MDPI AG, Vol. 24, No. 19 ( 2019-09-24), p. 3461-
    Abstract: Angelica keiskei Koidzumi (A. keiskei), as a Japanese edible herbal plant, enjoys a variety of biological activities due to the presence of numerous active compounds, especially flavonoids. This study aims for the optimization of ultrasound-assisted extraction (UAE) for flavonoids in A. keiskei and their antioxidant activity by using the response surface methodology (RSM). Single-factor experiments and a four-factor three-level Box–Behnken design (BBD) were performed to explore the effects of the following parameters on flavonoid extraction and antioxidant activity evaluation: ultrasonic temperature (X1), ultrasonic time (X2), ethanol concentration (X3) and liquid–solid ratio (X4). The optimum conditions of the combination of total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (DPPH-RSC) and ferric-reducing antioxidant power (FRAP) were as follows: X1 = 80 °C, X2 = 4 min, X3 = 78%, X4 = 35 mL/g, respectively. The experimental results provide a theoretical basis for the extensive utilization of A. keiskei and flavonoids extraction from A. keiskei as a potential source of antioxidants.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Foods, MDPI AG, Vol. 10, No. 9 ( 2021-08-29), p. 2036-
    Abstract: 4-hydroxyderricin (4-HD), as a natural flavonoid compound derived from Angelica keiskei, has largely unknown inhibition and mechanisms on liver cancer. Herein, we investigated the inhibitory effects of 4-HD on hepatocellular carcinoma (HCC) cells and clarified the potential mechanisms by exploring apoptosis and cell cycle arrest mediated via the PI3K/AKT/mTOR signaling pathway. Our results show that 4-HD treatment dramatically decreased the survival rate and activities of HepG2 and Huh7 cells. The protein expressions of apoptosis-related genes significantly increased, while those related to the cell cycle were decreased by 4-HD. 4-HD also down-regulated PI3K, p-PI3K, p-AKT, and p-mTOR protein expression. Moreover, PI3K inhibitor (LY294002) enhanced the promoting effect of 4-HD on apoptosis and cell cycle arrest in HCC cells. Consequently, we demonstrate that 4-HD can suppress the proliferation of HCC cells by promoting the PI3K/AKT/mTOR signaling pathway mediated apoptosis and cell cycle arrest.
    Type of Medium: Online Resource
    ISSN: 2304-8158
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704223-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 11, No. 12 ( 2019-11-30), p. 1973-
    Abstract: The worldwide applications of polyurethane (PU) and polystyrene (PS) sponge materials have been causing massive non-renewable resource consumption and huge loss of property and life due to its high flammability. Finding a biodegradable and regenerative sponge material with desirable thermal and flame retardant properties remains challenging to date. In this study, bio-based, renewable calcium alginate hybrid sponge materials (CAS) with high thermal stability and flame retardancy were fabricated through a simple, eco-friendly, in situ, chemical-foaming process at room temperature, followed by a facile and economical post-cross-linking method to obtain the organic-inorganic (CaCO3) hybrid materials. The microstructure of CAS showed desirable porous networks with a porosity rate of 70.3%, indicating that a great amount of raw materials can be saved to achieve remarkable cost control. The sponge materials reached a limiting oxygen index (LOI) of 39, which was greatly improved compared with common sponge. Moreover, with only 5% calcium carbonate content, the initial thermal degradation temperature of CAS was increased by 70 °C (from 150 to 220 °C), compared to that of calcium alginate, which met the requirements of high-temperature resistant and nonflammable materials. The thermal degradation mechanism of CAS was supposed based on the experimental data. The combined results suggest promising prospects for the application of CAS in a range of fields and the sponge materials provide an alternative for the commonly used PU and PS sponge materials.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Biomolecules Vol. 11, No. 2 ( 2021-01-21), p. 135-
    In: Biomolecules, MDPI AG, Vol. 11, No. 2 ( 2021-01-21), p. 135-
    Abstract: Autophagy, which is a conserved biological process and essential mechanism in maintaining homeostasis and metabolic balance, enables cells to degrade cytoplasmic constituents through lysosomes, recycle nutrients, and survive during starvation. Autophagy exerts an anticarcinogenic role in normal cells and inhibits the malignant transformation of cells. On the other hand, aberrations in autophagy are involved in gene derangements, cell metabolism, the process of tumor immune surveillance, invasion and metastasis, and tumor drug-resistance. Therefore, autophagy-targeted drugs may function as anti-tumor agents. Accumulating evidence suggests that flavonoids have anticarcinogenic properties, including those relating to cellular proliferation inhibition, the induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, the impairment of cell migration, invasion, tumor angiogenesis, and the reduction of multidrug resistance in tumor cells. Flavonoids, which are a group of natural polyphenolic compounds characterized by multiple targets that participate in multiple pathways, have been widely studied in different models for autophagy modulation. However, flavonoid-induced autophagy commonly interacts with other mechanisms, comprehensively influencing the anticancer effect. Accordingly, targeted autophagy may become the core mechanism of flavonoids in the treatment of tumors. This paper reviews the flavonoid-induced autophagy of tumor cells and their interaction with other mechanisms, so as to provide a comprehensive and in-depth account on how flavonoids exert tumor-suppressive effects through autophagy.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2701262-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nanomaterials, MDPI AG, Vol. 9, No. 3 ( 2019-03-05), p. 375-
    Abstract: This article presents a facile, one-pot method using the aqueous phase for the synthesis of high-quality Pd nanocubes. In this study, Pd chloride was used as the precursor, sodium iodide as capping agent, and poly(vinylpyrrolidone) as surfactant and reducing agent. The effects of different halogens on the morphology of Pd nanocrystals were investigated. The results showed that, in this synthesis system, the selection and proper amount of sodium iodide was essential to the preparation of high-quality Pd nanocubes. When iodide was replaced by other halogens (such as bromide and chloride), Pd nanocrystals with cubic morphology could not be obtained. In addition, we have found that NaBH4 can be used to efficiently remove inorganic covers, such as iodide, from the surface of Pd nanoparticles as synthesized. The Pd nanoparticles obtained were employed as electro-catalysts for formic acid oxidation, and they exhibited excellent catalytic activity and good stability towards this reaction.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662255-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...