GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SAGE Publications  (2)
  • Li, Qian  (2)
Material
Publisher
  • SAGE Publications  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2017
    In:  Journal of Cerebral Blood Flow & Metabolism Vol. 37, No. 9 ( 2017-09), p. 3110-3123
    In: Journal of Cerebral Blood Flow & Metabolism, SAGE Publications, Vol. 37, No. 9 ( 2017-09), p. 3110-3123
    Abstract: Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.
    Type of Medium: Online Resource
    ISSN: 0271-678X , 1559-7016
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2017
    detail.hit.zdb_id: 2039456-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Cerebral Blood Flow & Metabolism, SAGE Publications, Vol. 39, No. 8 ( 2019-08), p. 1531-1543
    Abstract: 20-HETE, an arachidonic acid metabolite synthesized by cytochrome P450 4A, plays an important role in acute brain damage from ischemic stroke or subarachnoid hemorrhage. We tested the hypothesis that 20-HETE inhibition has a protective effect after intracerebral hemorrhage (ICH) and then investigated its effect on angiogenesis. We exposed hippocampal slice cultures to hemoglobin and induced ICH in mouse brains by intrastriatal collagenase injection to investigate the protective effect of 20-HETE synthesis inhibitor N-hydroxy-N′-(4- n-butyl-2-methylphenyl)-formamidine (HET0016). Hemoglobin-induced neuronal death was assessed by propidium iodide after 18 h in vitro. Lesion volume, neurologic deficits, cell death, reactive oxygen species (ROS), neuroinflammation, and angiogenesis were evaluated at different time points after ICH. In cultured mouse hippocampal slices, HET0016 attenuated hemoglobin-induced neuronal death and decreased levels of proinflammatory cytokines and ROS. In vivo, HET0016 reduced brain lesion volume and neurologic deficits, and decreased neuronal death, ROS production, gelatinolytic activity, and the inflammatory response at three days after ICH. However, HET0016 did not inhibit angiogenesis, as levels of CD31, VEGF, and VEGFR2 were unchanged on day 28. We conclude that 20-HETE is involved in ICH-induced brain damage. Inhibition of 20-HETE synthesis may provide a viable means to mitigate ICH injury without inhibition of angiogenesis.
    Type of Medium: Online Resource
    ISSN: 0271-678X , 1559-7016
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2019
    detail.hit.zdb_id: 2039456-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...