GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (5)
  • Li, Ping  (5)
  • 2020-2024  (5)
Material
Publisher
  • Oxford University Press (OUP)  (5)
Language
Years
  • 2020-2024  (5)
Year
Subjects(RVK)
  • 1
    In: European Heart Journal, Oxford University Press (OUP), Vol. 42, No. 36 ( 2021-09-21), p. 3770-3782
    Abstract: Despite considerable therapeutic advances, there is still a dearth of evidence on the molecular determinants of cardiac hypertrophy that culminate in heart failure. Neuraminidases are a family of enzymes that catalyze the cleavage of terminal sialic acids from glycoproteins or glycolipids. This study sought to characterize the role of neuraminidases in pathological cardiac hypertrophy and identify pharmacological inhibitors targeting mammalian neuraminidases. Methods and results  Neuraminidase 1 (NEU1) was highly expressed in hypertrophic hearts of mice and rats, and this elevation was confirmed in patients with hypertrophic cardiomyopathy (n = 7) compared with healthy controls (n = 7). The increased NEU1 was mainly localized in cardiomyocytes by co-localization with cardiac troponin T. Cardiomyocyte-specific NEU1 deficiency alleviated hypertrophic phenotypes in response to transverse aortic constriction or isoproterenol hydrochloride infusion, while NEU1 overexpression exacerbated the development of cardiac hypertrophy. Mechanistically, co-immunoprecipitation coupled with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated that NEU1 translocated into the nucleus and interacted with GATA4, leading to Foetal gene (Nppa and Nppb) expression. Virtual screening and experimental validation identified a novel compound C-09 from millions of compounds that showed favourable binding affinity to human NEU1 (KD = 0.38 μM) and effectively prevented the development of cardiac remodelling in cellular and animal models. Interestingly, anti-influenza drugs zanamivir and oseltamivir effectively inhibited mammalian NEU1 and showed new indications of cardio-protection. Conclusions  This work identifies NEU1 as a critical driver of cardiac hypertrophy and inhibition of NEU1 opens up an entirely new field of treatment for cardiovascular diseases.
    Type of Medium: Online Resource
    ISSN: 0195-668X , 1522-9645
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2001908-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Journal of Industrial Microbiology and Biotechnology Vol. 47, No. 12 ( 2020-12-01), p. 1083-1097
    In: Journal of Industrial Microbiology and Biotechnology, Oxford University Press (OUP), Vol. 47, No. 12 ( 2020-12-01), p. 1083-1097
    Abstract: d-Limonene, a cyclized monoterpene, possesses citrus-like olfactory property and multi-physiological functions, which can be used as a bioactive compound and flavor to improve the overall quality of alcoholic beverages. In our previous study, we established an orthogonal pathway of d-limonene synthesis by introducing neryl diphosphate synthase 1 (tNDPS1) and d-limonene synthase (tLS) in Saccharomyces cerevisiae. To further increase d-limonene formation, the metabolic flux of the mevalonate (MVA) pathway was enhanced by overexpressing the key genes tHMGR1, ERG12, IDI1, and IDI1  WWW, respectively, or co-overexpressing. The results showed that strengthening the MVA pathway significantly improved d-limonene production, while the best strain yielded 62.31 mg/L d-limonene by co-expressing tHMGR1, ERG12, and IDI1  WWW genes in alcoholic beverages. Furthermore, we also studied the effect of enhancing the MVA pathway on the growth and fermentation of engineered yeasts during alcoholic beverage fermentation. Besides, to further resolve the problem of yeast growth inhibition, we separately investigated transporter proteins of the high-yielding d-limonene yeasts and the parental strain under the stress of different d-limonene concentration, suggesting that the transporters of Aus1p, Pdr18p, Pdr5p, Pdr3p, Pdr11p, Pdr15p, Tpo1p, and Ste6p might play a more critical role in alleviating cytotoxicity and improving the tolerance to d-limonene. Finally, we verified the functions of three transporter proteins, finding that the transporter of Aus1p failed to transport d-limonene, and the others (Pdr5p and Pdr15p) could improve the tolerance of yeast to d-limonene. This study provided a valuable platform for other monoterpenes’ biosynthesis in yeast during alcoholic beverage fermentation.
    Type of Medium: Online Resource
    ISSN: 1476-5535 , 1367-5435
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1482484-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Journal of Industrial Microbiology and Biotechnology Vol. 47, No. 6-7 ( 2020-07-01), p. 511-523
    In: Journal of Industrial Microbiology and Biotechnology, Oxford University Press (OUP), Vol. 47, No. 6-7 ( 2020-07-01), p. 511-523
    Abstract: d-Limonene, a cyclic monoterpene, possesses citrus-like olfactory property and multi-physiological functions. In this study, the d-limonene synthase (t LS) from Citrus limon was codon-optimized and heterologously expressed in Saccharomyces cerevisiae. The metabolic flux of canonical pathway based on overexpressing endogenous geranyl diphosphate synthase gene (ERG20) and its variant ERG20F96W−N127W was strengthened for improvement d-limonene production in Chinese Baijiu. To further elevate production, we established an orthogonal pathway by introducing neryl diphosphate synthase 1 (t NDPS1) from Solanum lycopersicum. The results showed that expressing ERG20 and ERG20F96W−N127W could enhance d-limonene synthesis, while expressing heterologous NPP synthase gene significantly increase d-limonene formation. Furthermore, we constructed a t LS–t NDPS1 fusion protein, and the best strain yielded 9.8 mg/L d-limonene after optimizing the amino acid linker and fusion order, a 40% improvement over the free enzymes during Chinese Baijiu fermentation. Finally, under the optimized fermentation conditions, a maximum d-limonene content of 23.7 mg/L in strain AY12α-L9 was achieved, which was the highest reported production in Chinese Baijiu. In addition, we also investigated that the effect of d-limonene concentration on yeast growth and fermentation. This study provided a meaningful insight into the platform for other valuable monoterpenes biosynthesis in Chinese Baijiu fermentation.
    Type of Medium: Online Resource
    ISSN: 1476-5535 , 1367-5435
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1482484-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Briefings in Bioinformatics, Oxford University Press (OUP), Vol. 21, No. 3 ( 2020-05-21), p. 1016-1022
    Abstract: Psychiatric disorders are a group of complex psychological syndromes with high prevalence. It has been reported that gut microbiota has a dominant influence on the risks of psychiatric disorders through gut microbiota–brain axis. We extended the classic gene set enrichment analysis (GSEA) approach to detect the association between gut microbiota and complex diseases using published genome-wide association study (GWAS) and GWAS of gut microbiota summary data. We applied our approach to real GWAS data sets of five psychiatric disorders, including attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (AUT), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD). To evaluate the performance of our approach, we also tested the genetic correlations of obesity and type 2 diabetes with gut microbiota. We identified several significant associations between psychiatric disorders and gut microbiota, such as ADHD and genus Desulfovibrio (P = 0.031), order Clostridiales (P = 0.034). For AUT, association signals were observed for genera Bacteroides (P = 0.012) and Desulfovibrio (P = 0.033). Genus Desulfovibrio (P = 0.005) appeared to be associated with BD. For MDD, association signals were observed for genus Desulfovibrio (P = 0.003), order Clostridiales (P = 0.004), family Lachnospiraceae (P = 0.007) and genus Bacteroides (P = 0.007). Genus Desulfovibrio (P = 0.012) and genus Bacteroides (P = 0.038) appeared to be associated with SCZ. Our study results provide novel clues for revealing the roles of gut microbiota in psychiatric disorders. This study also illustrated the good performance of GSEA approach for exploring the relationships between gut microbiota and complex diseases.
    Type of Medium: Online Resource
    ISSN: 1467-5463 , 1477-4054
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2036055-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plant Physiology, Oxford University Press (OUP), Vol. 190, No. 1 ( 2022-08-29), p. 352-370
    Abstract: The pollen wall is important for protecting the male gametophyte and for fertilization. The lipid components of the pollen wall are mainly synthesized and transported from the sporophytic tapetum. Although several factors related to lipid biosynthesis have been characterized, the molecular mechanisms underlying lipid biosynthesis during pollen development in rice (Oryza sativa L.) remain elusive. Here, we showed that mutation in the SWOLLEN TAPETUM AND STERILITY 1 (STS1) gene causes delayed tapetum degradation and aborted pollen wall formation in rice. STS1 encodes an endoplasmic reticulum (ER)-localized protein that contains domain of unknown function (DUF) 726 and exhibits lipase activity. Lipidomic and transcriptomic analyses showed that STS1 is involved in anther lipid homeostasis. Moreover, STS1 interacts with Polyketide Synthase 2 (OsPKS2) and Acyl-CoA Synthetase 12 (OsACOS12), two enzymes crucial in lipidic sporopollenin biosynthesis in pollen wall formation, suggesting a potentially lipidic metabolon for sporopollenin biosynthesis in rice. Collectively, our results indicate that STS1 is an important factor for lipid biosynthesis in reproduction, providing a target for the artificial control of male fertility in hybrid rice breeding and insight into the function of DUF726-containing protein in plants.
    Type of Medium: Online Resource
    ISSN: 0032-0889 , 1532-2548
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...