GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Li, Kaiwei  (4)
Material
Publisher
  • MDPI AG  (4)
Language
Years
  • 1
    In: Water, MDPI AG, Vol. 12, No. 11 ( 2020-11-02), p. 3066-
    Abstract: Among the most frequent and dangerous natural hazards, landslides often result in huge casualties and economic losses. Landslide susceptibility mapping (LSM) is an excellent approach for protecting and reducing the risks by landslides. This study aims to explore the performance of Bayesian optimization (BO) in the random forest (RF) and gradient boosting decision tree (GBDT) model for LSM and applied in Shuicheng County, China. Multiple data sources are used to obtain 17 conditioning factors of landslides, Borderline-SMOTE and Randomundersample methods are combined to solve the imbalanced sample problem. RF and GBDT models before and after BO are adopted to calculate the susceptibility value of landslides and produce LSMs and these models were compared and evaluated using multiple validation approach. The results demonstrated that the models we proposed all have high enough model accuracy to be applied to produce LSM, the performance of the RF is better than the GBDT model without BO, while after adopting the Bayesian optimized hyperparameters, the prediction accuracy of the RF and GBDT models is improved by 1% and 7%, respectively and the Bayesian optimized GBDT model is the best for LSM in this four models. In summary, the Bayesian optimized RF and GBDT models, especially the GBDT model we proposed for landslide susceptibility assessment and LSM construction has a very good application performance and development prospects.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  International Journal of Environmental Research and Public Health Vol. 16, No. 11 ( 2019-06-10), p. 2047-
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 16, No. 11 ( 2019-06-10), p. 2047-
    Abstract: Tianchi volcano is a dormant active volcano with a risk of re-eruption. Volcanic soil and volcanic ash samples were collected around the volcano and the concentrations of 21 metals (major and trace elements) were determined. The spatial distribution of the metals was obtained by inverse distance weight (IDW) interpolation. The metals’ sources were identified and their pollution levels were assessed to determine their potential ecological and human health risks. The metal concentrations were higher around Tianchi and at the north to the west of the study area. According to the geo-accumulation index (Igeo), enrichment factor (EF) and contamination factor (CF) calculations, Zn pollution was high in the study area. Pearson’s correlation analysis and principal component analysis showed that with the exception of Fe, Mn and As, the metals that were investigated (Al, K, Ca, Na, Mg, Ti, Cu, Pb, Zn, Cr, Ni, Ba, Ga, Li, Co, Cd, Sn, Sr) were mostly naturally derived. A small proportion of Li, Pb and Zn may have come from vehicle traffic. There is no potential ecological risk and non-carcinogenic risk because of the low concentrations of the metals; however, it is necessary to pay attention to the carcinogenic risk of Cr and As in children.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2175195-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 13, No. 22 ( 2021-11-20), p. 4694-
    Abstract: Landslides pose a constant threat to the lives and property of mountain people and may also cause geomorphological destruction such as soil and water loss, vegetation destruction, and land cover change. Landslide susceptibility assessment (LSA) is a key component of landslide risk evaluation. There are many related studies, but few analyses and comparisons of models for optimization. This paper aims to introduce the Tree-structured Parzen Estimator (TPE) algorithm for hyperparameter optimization of three typical neural network models for LSA in Shuicheng County, China, as an example, and to compare the differences of predictive ability among the models in order to achieve higher application performance. First, 17 influencing factors of landslide multiple data sources were selected for spatial prediction, hybrid ensemble oversampling and undersampling techniques were used to address the imbalanced sample and small sample size problem, and the samples were randomly divided into a training set and validation set. Second, deep neural network (DNN), recurrent neural network (RNN), and convolutional neural network (CNN) models were adopted to predict the regional landslides susceptibility, and the TPE algorithm was used to optimize the hyperparameters respectively to improve the assessment capacity. Finally, to compare the differences and optimization effects of these models, several objective measures were applied for validation. The results show that the high-susceptibility regions mostly distributed in bands along fault zones, where the lithology is mostly claystone, sandstone, and basalt. The DNN, RNN, and CNN models all perform well in LSA, especially the RNN model. The TPE optimization significantly improves the accuracy of the DNN and CNN (3.92% and 1.52%, respectively), but does not improve the performance of the RNN. In summary, our proposed RNN model and TPE-optimized DNN and CNN model have robust predictive capability for landslide susceptibility in the study area and can also be applied to other areas containing similar geological conditions.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 12, No. 9 ( 2020-09-15), p. 2572-
    Abstract: Landslides are among the most frequent natural hazards in the world. Rainfall is an important triggering factor for landslides and is responsible for topples, slides, and debris flows—three of the most important types of landslides. However, several previous relevant research studies covered general landslides and neglected the rainfall–topples–slides–debris flows disaster chain. Since landslide hazard mapping (LHM) is a critical tool for disaster prevention and mitigation, this study aimed to build a GeoDetector and Bayesian network (BN) model framework for LHM in Shuicheng County, China, to address these geohazards. The GeoDetector model will be used to screen factors, eliminate redundant information, and discuss the interaction between elements, while the BN model will be used for constructing a causality disaster chain network to determine the probability and risk level of the three types of landslides. The practicability of the BN model was confirmed by error rate and scoring rules validation. The prediction accuracy results were tested using overall accuracy, Matthews correlation coefficient, relative operating characteristics curve, and seed cell area index. The proposed framework is demonstrated to be sufficiently accurate to construct the complex LHM. In summary, the combination of the GeoDetector and BN model is very promising for spatial prediction of landslides.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...