GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Agronomy, MDPI AG, Vol. 12, No. 7 ( 2022-06-27), p. 1539-
    Abstract: Mechanized transplanting of rapeseed (Brassica napus L.) blanket seedling is an effective strategy to cope with the seasonal conflict and large labor cost in rapeseed production. The sowing density is a key factor to cultivate high-quality seedlings suitable for mechanized transplanting. An experiment was conducted to investigate the effects of different sowing density levels of 638, 696, 754, 812, 870 and 928 seeds per tray (referred as D1, D2, D3, D4, D5 and D6, respectively) on agronomic traits and survival rate after mechanized transplanting of two rapeseed cultivars (Zheyouza108 and Heza17) in 2020 and 2021. The results showed that high sowing density increased plant height but decreased leaf area, collar diameter, biomass accumulation, the ratio of root to shoot and seedling fullness. These negative effects jointly decreased the seedling rate and survival rate after mechanized transplanting. However, the seedlings under D1 and D2 posed a great plant survival rate of more than 95% after mechanized transplanting, suggesting that the seedlings under the two densities were perfect for mechanized transplanting. In addition, hierarchical analysis grouped D1 and D2 into the same class, indicating that their seedling qualities were not significantly different, though the blanket seedlings under D1 outperformed those under D2 in some traits. A sowing density of 696 seeds per tray (D2) is then recommended in this study, altogether considering its high-quality seedlings suitable for mechanized transplanting, and economically, fewer seedling trays required.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 25 ( 2016-06-21)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 25 ( 2016-06-21)
    Abstract: Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Crohn's and Colitis, Oxford University Press (OUP), Vol. 13, No. 7 ( 2019-07-25), p. 931-941
    Abstract: Crosstalk between mesenteric adipose tissue [MAT] and the intestines affects the progression of Crohn’s disease [CD] . The adipokine metrnl regulates adipocyte function and has anti-inflammatory activity. We aimed to explore metrnl expression in CD MAT, investigate the influence of metrnl on the experimental colitis disease course and determine the mechanism underlying this effect. Methods Metrnl expression in MAT specimens obtained from patients with and without CD was tested by immunohistochemistry. Male Il-10–/– mice with spontaneous enteritis were divided into positive control and metrnl-treated [Metrnl-Fc, 10 mg/kg/d, intraperitoneally, 8 weeks] groups. Age-matched male wild-type [WT] mice were used as negative controls. The effects of metrnl on enteritis and mesenteric lesions and the potential controlling mechanisms were evaluated. Results Metrnl expression was higher in human CD MAT than in control MAT. Systemic delivery of metrnl significantly ameliorated chronic colitis in Il-10–/– mice, as demonstrated by decreases in the disease activity index, inflammatory score and proinflammatory mediators. The protective effects of metrnl on MAT included reduced mesenteric hypertrophy, increased adipocyte size, improved adipocyte intrinsic function and ameliorated inflammation. Metrnl treatment activated STAT5/PPAR-γ signaling and promoted adipocyte differentiation in the MAT. Conclusions Metrnl expression was increased in the MAT of CD patients. Metrnl administration attenuated mesenteric lesions by promoting adipocyte function and differentiation partly through STAT5/PPAR-γ signaling pathway activation, thereby ameliorating CD-like colitis in mice.
    Type of Medium: Online Resource
    ISSN: 1873-9946 , 1876-4479
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2389631-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Hydrogen Energy, Elsevier BV, Vol. 56 ( 2024-02), p. 330-337
    Type of Medium: Online Resource
    ISSN: 0360-3199
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1484487-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Applied Sciences Vol. 11, No. 12 ( 2021-06-20), p. 5719-
    In: Applied Sciences, MDPI AG, Vol. 11, No. 12 ( 2021-06-20), p. 5719-
    Abstract: Artificial intelligence chips (AICs) are the intersection of integrated circuits and artificial intelligence (AI), involving structure design, algorithm analysis, chip fabrication and application scenarios. Due to their excellent ability in data processing, AICs show a long-term industrial prospect in big data services, cloud centers, etc. However, with the conceivable exhaustion of Moore’s Law, the size of traditional electronic AICs (EAICs) is gradually approaching the limit, and an architectural update is highly required. Photonic artificial intelligence chips (PAIC) utilize light beam propagation in the silicon waveguide, contributing to a high parallelism configuration, fast calculation speed and low latency. Due to light manipulation, PAICs perform well in anti-electromagnetic interference and energy conservation. This invited paper summarized the recent research on PAICs. The characteristics of different hardware structures are discussed. The current widely used training algorithm is given and the Photonic Design Automatic (PDA) simulation platform is introduced. In addition, the authors’ related work on PAICs is presented and we believe that PAICs may play a critical role in the deployment of data processing technology.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Agronomy, MDPI AG, Vol. 11, No. 10 ( 2021-09-24), p. 1918-
    Abstract: Salt stress is a major negative factor affecting the sustainable development of agriculture. Phosphorus (P) deficiency often occurs in saline soil, and their interaction inhibits plant growth and seed yield for canola (Brassica napus L.). P supply is considered an effective way to alleviate the damage of salt stress. However, the knowledge of how P supply can promote plant growth in saline environment was limited. A field experiment was conducted to explore the effects of P rate on accumulation, and partitioning, of biomass and P, leaf photosynthesis traits, and yield performance in saline soil in the coastal area of Yancheng City, Jiangsu Province, China, during the 2018–2019 and 2019–2020 growing seasons. P supply increased biomass and P accumulation in all organs, and root had the most increments among different organs. At flowering stage, P supply increased the biomass and P partitioning in root and leaf, but it decreased the partitioning in stem. At maturity stage, P supply facilitated the biomass and P partitioning in seed, but it decreased the partitioning in stem and shell, and it increased the reproductive-vegetative ratio, suggesting that P supply can improve the nutrients transporting from vegetative organs to reproductive organs. Besides, P supply improved the leaf area index and photosynthetic rate at the flowering stage. As a result, the seed yield and oil yield were increased. In conclusion, P supply can improve the canola plant growth and seed yield in a saline environment. P fertilizer at the rate of 120 kg P2O5 ha−1 was recommended in this saline soil.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Crohn's and Colitis, Oxford University Press (OUP), ( 2024-03-11)
    Abstract: Intestinal fibrotic stenosis is a major reason for surgery in Crohn's disease [CD], but the mechanism is unknown. Thus, we asked whether intestinal adipocytes contribute to intestinal fibrosis. Adipocytes were found to transdifferentiate into myofibroblasts and confirmed to be involved in mesenteric fibrosis in our recent study. Here, we investigated the role and possible mechanisms of intestinal adipocytes in intestinal fibrosis in CD. Methods The intestinal tissue of patients with CD with or without fibrotic stenosis [CDS or CDN] and normal intestinal tissue from individuals without CD were obtained to assess alterations in submucosal adipocytes in CDS and whether these cells transdifferentiated into myofibroblasts and participated in the fibrotic process. Human primary adipocytes and adipose organoids were used to evaluate whether adipocytes could be induced to transdifferentiate into myofibroblasts and to investigate the fibrotic behaviour of adipocytes. LPS/TLR4/TGF-β signalling was also studied to explore the underlying mechanism. Results Submucosal adipocytes were reduced in number or even absent in CDS tissue, and the extent of the reduction correlated negatively with the degree of submucosal fibrosis. Interestingly, submucosal adipocytes in CDS tissue transdifferentiated into myofibroblast-like cells and expressed collagenous components, possibly due to stimulation by submucosally translocated bacteria. LPS-stimulated human primary adipocytes and adipose organoids also exhibited transdifferentiation and profibrotic behaviour. Mechanistically, TLR4-mediated TGF-β signalling was associated with the transdifferentiation and profibrotic behaviour of intestinal adipocytes in CDS tissue. Conclusions Intestinal adipocytes transdifferentiate into myofibroblasts and participate in the intestinal fibrosis process in CD, possibly through LPS/TLR4/TGF-β signalling.
    Type of Medium: Online Resource
    ISSN: 1873-9946 , 1876-4479
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2389631-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...