GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Li, Jin  (2)
Material
Publisher
  • Frontiers Media SA  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-12-5)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-12-5)
    Abstract: Candida duobushaemulonii , type II Candida haemulonii complex, is closely related to Candida auris and capable of causing invasive and non-invasive infections in humans. Eleven strains of C . duobushaemulonii were collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), VITEK 2 Yeast Identification Card (YST), and internal transcribed spacer (ITS) sequencing. Whole genome sequencing of C . duobushaemulonii was done to determine their genotypes. Furthermore, C . duobushaemulonii strains were tested by Sensititre YeastOne™ and Clinical and Laboratory Institute (CLSI) broth microdilution panel for antifungal susceptibility. Three C . duobushaemulonii could not be identified by VITEK 2. All 11 isolates had high minimum inhibitory concentrations (MICs) to amphotericin B more than 2 μg/ml. One isolate showed a high MIC value of ≥64 μg/ml to 5-flucytosine. All isolates were wild type (WT) for triazoles and echinocandins. FUR1 variation may result in C . duobushaemulonii with high MIC to 5-flucytosine. Candida duobushaemulonii mainly infects patients with weakened immunity, and the amphotericin B resistance of these isolates might represent a challenge to clinical treatment.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 13 ( 2022-10-14)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-10-14)
    Abstract: The use of morphology to diagnose invasive mould infections in China still faces substantial challenges, which often leads to delayed diagnosis or misdiagnosis. We developed a model called XMVision Fungus AI to identify mould infections by training, testing, and evaluating a ResNet-50 model. Our research achieved the rapid identification of nine common clinical moulds: Aspergillus fumigatus complex, Aspergillus flavus complex, Aspergillus niger complex, Aspergillus terreus complex, Aspergillus nidulans , Aspergillus sydowii/Aspergillus versicolor , Syncephalastrum racemosum , Fusarium spp., and Penicillium spp. In our study, the adaptive image contrast enhancement enabling XMVision Fungus AI as a promising module by effectively improve the identification performance. The overall identification accuracy of XMVision Fungus AI was up to 93.00% (279/300), which was higher than that of human readers. XMVision Fungus AI shows intrinsic advantages in the identification of clinical moulds and can be applied to improve human identification efficiency through training. Moreover, it has great potential for clinical application because of its convenient operation and lower cost. This system will be suitable for primary hospitals in China and developing countries.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...