GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • Li, Hui  (4)
  • Wang, Xin  (4)
Material
Publisher
  • MDPI AG  (4)
Language
Years
  • 1
    In: Pathogens, MDPI AG, Vol. 9, No. 5 ( 2020-05-12), p. 371-
    Abstract: Japanese encephalitis virus (JEV) is a zoonotic pathogen that is maintained by mosquito vectors and vertebrate hosts including birds in a natural transmission cycle. Domestic ducklings are sensitive to JEV infection, but the clinical responses of domestic ducklings to natural JEV infection are unknown. In this study, we simulated the natural JEV infection of domestic ducklings via JEV-infected mosquito bites to evaluate the pathogenicity of JEV in domestic ducklings. Specific pathogen-free domestic ducklings were infected at day 2 post-hatching with JEV-infected Culex pipiens mosquito bites and monitored for clinical responses. Among 20 ducklings exposed to JEV-infected mosquitoes, six showed mild and non-characteristic clinical signs starting at two days post-infection, then died suddenly with neurological signs of opisthotonos (a condition of spasm of the back muscles causing the head and limbs to bend backward and the trunk to arch forward) between two and three days post-infection. The mortality of the affected ducklings was 30% (6/20). Multifocal lymphohistiocytic perivascular cuffs and lymphohistiocytic meningitis were macroscopically observed in the affected duckling brains. JEV was detected in the cytoplasm of neuronal cells in the affected duckling brains by immunohistochemical assays and was recovered from the affected duckling brains by viral isolation. These observations indicated that JEV infection via mosquito bites causes mortality associated with viral encephalitis in newly hatched domestic ducklings, thus demonstrating the potential pathogenicity of JEV in domestic ducklings under natural conditions.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2017
    In:  Sensors Vol. 17, No. 7 ( 2017-07-24), p. 1695-
    In: Sensors, MDPI AG, Vol. 17, No. 7 ( 2017-07-24), p. 1695-
    Abstract: With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Catalysts, MDPI AG, Vol. 9, No. 3 ( 2019-03-04), p. 237-
    Abstract: Microenvironment modification within nanoconfinement can maximize the catalytic activity of enzymes. Phospholipase A1 (PLA1) has been used as the biocatalyst to produce high value L-α-glycerylphosphorylcholine (L-α-GPC) through hydrolysis of phosphatidylcholine (PC). We successfully developed a simple co-precipitation method to encapsulate PLA1 in a metal–surfactant nanocomposite (MSNC), then modified it using alkalescent 2-Methylimidazole (2-Melm) to promote catalytic efficiency in biphasic systems. The generated 2-Melm@PLA1/MSNC showed higher catalytic activity than PLA1/MSNC and free PLA1. Scanning electron microscopy and transmission electron microscopy showed a typical spherical structure of 2-Melm@PLA1/MSNC at about 50 nm, which was smaller than that of 2-Melm@MSNC. Energy disperse spectroscopy, N2 adsorption isotherms, Fourier transform infrared spectrum, and high-resolution X-ray photoelectron spectroscopy proved that 2-Melm successfully modified PLA1/MSNC. The generated 2-Melm@PLA1/MSNC showed a high catalytic rate per unit enzyme mass of 1.58 μmol mg-1 min-1 for the formation of L-α-GPC. The 2-Melm@PLA1/MSNC also showed high thermal stability, pH stability, and reusability in a water–hexane biphasic system. The integration of alkaline and amphiphilic properties of a nanocomposite encapsulating PLA1 resulted in highly efficient sequenced reactions of acyl migration and enzymatic hydrolysis at the interface of a biphasic system, which cannot be achieved by free enzyme.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Catalysts, MDPI AG, Vol. 12, No. 6 ( 2022-06-13), p. 650-
    Abstract: Phospholipase B (PLB) harbors three distinct activities with broad substrate specificities and application fields. Its hydrolyzing of sn-1 and sn-2 acyl ester bonds enables it to catalyze the production of L-alpha-glycerylphosphorylcholine (L-α-GPC) from phosphatidylcholine (PC) without speed-limiting acyl migration. This work was intended to obtain high-level active PLB and apply it to establish an efficient system for L-α-GPC synthesis. PLB from Pseudomonas fluorescens was co-expressed with five different molecular chaperones, including trigger factor (Tf), GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), GroELS and DnaKJE, or GroELS and Tf or fused with maltose binding protein (MBP) in Escherichia coli BL21(DE3) to improve PLB expression. PLB with DnaKJE-assisted expression exhibited the highest catalytic activity. Further optimization of the expression conditions identified an optimal induction OD600 of 0.8, IPTG concentration of 0.3 mmol/L, induction time of 9 h, and temperature of 25 °C. The PLB activity reached a maximum of 524.64 ± 3.28 U/mg under optimal conditions. Subsequently, to establish an efficient PLB-catalyzed system for L-α-GPC synthesis, a series of organic-aqueous mixed systems and surfactant-supplemented aqueous systems were designed and constructed. Furthermore, the factors of temperature, reaction pH, metal ions, and substrate concentration were further systematically identified. Finally, a high yield of 90.50 ± 2.21% was obtained in a Span 60-supplemented aqueous system at 40 °C and pH 6.0 with 0.1 mmol/L of Mg2+. The proposed cost-effective PLB production and an environmentally friendly PLB-catalyzed system offer a candidate strategy for the industrial production of L-α-GPC.
    Type of Medium: Online Resource
    ISSN: 2073-4344
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662126-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...