GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Li, Erzhu  (2)
  • Wang, Xin  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    In: Remote Sensing, MDPI AG, Vol. 11, No. 12 ( 2019-06-12), p. 1397-
    Abstract: Land-cover map is the basis of research and application related to urban planning, environmental management and ecological protection. Land-cover updating is an essential task especially in a rapidly urbanizing region, where fast development makes it necessary to monitor land-cover change in a timely manner. However, conventional approaches always have the limitations of large amounts of sample collection and exploitation of relational knowledge between multi-modality remote sensing datasets. With some global land-cover products being available, it is important to produce new land-cover maps based on the existing land-cover products and time series images. To this end, a novel transfer learning based automatic approach was proposed for updating land cover maps of rapidly urbanizing regions. In detail, the proposed method is composed of the following three steps. The first is to design a strategy to extract reliable land-cover information from the historical land-cover map for one of the images (source domain). Then, a novel relational knowledge transfer technique is applied to transfer label information. Finally, classifiers are trained on the transferred samples with spatio-spectral features. The experimental results show that aforementioned steps can select sufficient effective samples for target images, and for the main land-cover classes in a rapidly urbanizing region; the results of an updated map show good performance in both precision and vision. Therefore, the proposed approach provides an automatic solution for urban land-cover mapping with a high degree of accuracy.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 12, No. 22 ( 2020-11-16), p. 3764-
    Abstract: Automated extraction of buildings from earth observation (EO) data has long been a fundamental but challenging research topic. Combining data from different modalities (e.g., high-resolution imagery (HRI) and light detection and ranging (LiDAR) data) has shown great potential in building extraction. Recent studies have examined the role that deep learning (DL) could play in both multimodal data fusion and urban object extraction. However, DL-based multimodal fusion networks may encounter the following limitations: (1) the individual modal and cross-modal features, which we consider both useful and important for final prediction, cannot be sufficiently learned and utilized and (2) the multimodal features are fused by a simple summation or concatenation, which appears ambiguous in selecting cross-modal complementary information. In this paper, we address these two limitations by proposing a hybrid attention-aware fusion network (HAFNet) for building extraction. It consists of RGB-specific, digital surface model (DSM)-specific, and cross-modal streams to sufficiently learn and utilize both individual modal and cross-modal features. Furthermore, an attention-aware multimodal fusion block (Att-MFBlock) was introduced to overcome the fusion problem by adaptively selecting and combining complementary features from each modality. Extensive experiments conducted on two publicly available datasets demonstrated the effectiveness of the proposed HAFNet for building extraction.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...